Poor hydrolysis and methanogenesis efficiencies remain the main challenges for blackwater anaerobic digestion. This study investigated the performance of a granular activated carbon (GAC) amended microbial electrolysis cell-assisted anaerobic digester (MEC-AD) treating blackwater. Due to hydrolysis limitation, both MEC-AD and control reactors experienced performance declines as the organic loading rate increased from 3.0 to 4.5 g COD/L-d. Then, adding GAC without mixing formed GAC-sludge aggregates that improved methane yield to 38.3% and 32.3% in the MEC-AD and control reactor, respectively, and enhanced hydrolysis efficiency. The amended MEC-AD also successfully overcame the performance deterioration due to a temperature drop. Biomarker identification revealed the crucial roles of GAC biofilms and settled sludge in promoting methanogenesis and hydrolysis, respectively. This study demonstrated the GAC addition and the electrochemical environment could have a reciprocal influence, leading to more robust syntrophic microbial interactions, which could guide the future application of conductive materials in MEC-AD systems.