AIM:Histone deacetylase (HDAC) inhibitors are a class of drugs that modulate transcriptional activity in cells and are known to induce cell-cycle arrest and angiogenesis, the major components of tumor cell proliferation. The aim of the present study was to characterize a novel hydroxamic acid-based HDAC inhibitor, PAT-1102, and determine its efficacy and tolerability in pre-clinical models.
MATERIALS AND METHODS:HDAC enzyme inhibition was measured using HeLa cell nuclear extracts, and recombinant HDAC enzymes. Antiproliferative activity was assessed in a panel of cancer cell lines. Histone hyper-acetylation status and p21 induction were assessed in HeLa cells by immunoblotting. The effect on apoptosis was tested by caspase-3 activation and detection of cleaved poly-ADP ribose polymerase (PARP). Single-dose pharmacokinetics of the compound were assessed in BALB/c mice following oral and intravenous administration. Antitumor efficacy was evaluated in tumor-bearing mice established from lung and colorectal cancer cells (A549 and HCT116, respectively).
RESULTS:PAT-1102 demonstrated potent HDAC-inhibitory activity and growth-inhibitory properties against a panel of cancer cell lines. The optimized compound PAT-1102 exhibits good aqueous solubility, metabolic stability and a favorable pharmacokinetic profile. Once-daily oral administration of PAT-1102 resulted in significant antitumor activity and was well-tolerated in mice.
CONCLUSION:Our results indicate that PAT-1102 is a novel, potent, orally available HDAC inhibitor with antiproliferative activity against several human cancer cell lines and antitumor activity in mouse xenograft models. Based on the pre-clinical efficacy and safety profile of PAT-1102, the compound demonstrates significant potential for evaluation as a novel drug candidate for cancer therapy.