SM5-1 is a humanized mouse monoclonal antibody, targeting an over-expressed membrane protein of approximately 230 kDa in hepatocellular carcinoma (HCC). SM5-1 can be used for target therapy in hepatocellular carinoma due to its ability of inhibiting cell growth and inducing apoptosis. However, the tumor inhibition efficacy of SM5-1 in HCC cancer treatment remains low. In this study, we synthesized SM5-1-conjugated gold nanoparticles (Au-SM5-1 NPs) and investigated their anticancer efficacy in HCC both in vitro and in vivo. The tumor inhibition rates of Au-SM5-1 NPs for subcutaneous tumor mice were 40.10% ± 4.34%, 31.37% ± 5.12%, and 30.63% ± 4.87% on day 12, 18, and 24 post-treatment as determined by bioluminescent intensity. In addition, we investigated the antitumor efficacy of Au-SM5-1 NPs in orthotopic HCC tumor models. The results showed that the inhibition rates of Au-SM5-1 NPs can reach up to 39.64% ± 4.87% on day 31 post-treatment determined by the bioluminescent intensity of the abdomen in tumor-bearing mice. Furthermore, three-dimensional reconstruction results of the orthotopic tumor revealed that Au-SM5-1 NPs significantly inhibited tumor growth compared with SM5-1 alone. Our results suggested that the developed Au-SM5-1 NPs has great potential as an antibody-based nano-drug for HCC therapy.