Introduction:Mesenchymal stromal cells (MSCs) can modulate immune responses and suppress inflammation in autoimmune diseases. Although their safety has been established in clinical trials, the efficacy of MSCs is inconsistent due to variability in potency among different preparations and limited specificity in targeting mechanisms driving autoimmune diseases.
Methods:We utilized High-Dimensional Design of Experiments methodology to identify factor combinations that modulate gene expression by MSCs to mitigate inflammation. This led to a novel MSC-based cell therapy, HXB-319. Its anti-inflammatory properties were validated in vitro by flow cytometry, RT-PCR, and mass spectrophotometry. To evaluate in vivo efficacy, we treated a diffuse alveolar hemorrhage (DAH) mouse model (C57Bl/6). Seven days post-DAH induction with pristane, mice received either MSCs or HXB-319 (2X106 cells, IP). On day 14, peritoneal lavage fluid (PLF) and lung tissue were collected for flow cytometry, histopathological examination and mRNA.
Results:HXB-319 increased gene expression levels of anti-inflammatory, angiogenic and anti-fibrotic factors (e.g. TSG-6, VEGF and HGF). KEGG pathway analysis confirmed significant activation of relevant anti-inflammatory, angiogenic, and anti-fibrotic proteins, corroborating RT-PCR results.In the DAH model, HXB-319 significantly reduced lung inflammation and alveolar hemorrhage compared to MSC treated and untreated DAH mice. HXB-319 treatment also significantly decreased neutrophils, plasmacytoid dendritic cells and RORγT cells, and increased FoxP3+ cells in PLF, and reversed alterations in mRNA encoding IL-6, IL-10 and TSG-6 in lung tissue compared to DAH mice.
Conclusion:HXB-319 effectively controls inflammation and prevents tissue damage in pristane induced DAH, highlighting its therapeutic potential for autoimmune inflammatory diseases.