Encapsulating fibroblasts in alginate hydrogels is a promising strategy to promote wound healing. However, improving the cell function within the alginate matrix remains a challenge. In this study, we engineer an injectable hydrogel through mixing alginate function with collagen and fibronectin, creating a better microenvironment for enhancing fibroblast function and cytokine secretion. We systematically analyze microstructure, mechanical properties, and fibroblast behavior of the developed hydrogel and compare it to alginate control. Our results demonstrate that inclusion collagen and fibronectin lead to the formation of fibrils on macroporous structures with pore sizes ranging from 100 to 500 μm. Compared to collagen hydrogel, the composite hydrogel shows approximately 12-fold increase in storage modulus. After encapsulating fibroblasts into the modified hydrogels, we observed increased fibroblast spreading, proliferation, and cytokine secretion when compared to neat alginate hydrogel. In addition, VEGF secretion of encapsulated fibroblasts is upregulated, indicating its pro-angiogenic potential. These findings suggest that the alginate/collagen/fibronectin hydrogel-encapsulated fibroblasts might serve as a promising therapeutic approach for wound healing.