The A(3) adenosine receptor (A(3)AR) is over-expressed in inflammatory cells and was defined as a target to combat inflammation. Synthetic agonists to this receptor, such as IB-MECA and Cl-IB-MECA, exert an anti-inflammatory effect in experimental animal models of adjuvant- and collagen-induced arthritis. In this study we present a novel A(3)AR agonist, CF502, with high affinity and selectivity at the human A(3)AR. CF502 induced a dose dependent inhibitory effect on the proliferation of fibroblast-like synoviocytes (FLS) via de-regulation of the nuclear factor-kappa B (NF-kappaB) signaling pathway. Furthermore, CF502 markedly suppressed the clinical and pathological manifestations of adjuvant-induced arthritis (AIA) in a rat experimental model when given orally at a low dose (100 microg/kg). As is typical of other G-protein coupled receptors, the A(3)AR expression level was down-regulated shortly after treatment with agonist CF502 in paw and in peripheral blood mononuclear cells (PBMCs) derived from treated AIA animals. Subsequently, a decrease in the expression levels of protein kinase B/Akt (PKB/Akt), IkappaB kinase (IKK), I kappa B (IkappaB), NF-kappaB and tumor necrosis factor-alpha (TNF-alpha) took place. In addition, the expression levels of glycogen synthase kinase-3 beta (GSK-3beta), beta-catenin, and poly(ADP-ribose)polymerase (PARP), known to control the level and activity of NF-kappaB, were down-regulated upon treatment with CF502. Taken together, CF502 inhibits FLS growth and the inflammatory manifestations of arthritis, supporting the development of A(3)AR agonists for the treatment of rheumatoid arthritis.