Objective:Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality worldwide. The Hippo signaling pathway, particularly its downstream effector Yes-associated protein (YAP), has been identified as a pivotal regulator of CRC tumorigenesis, metastasis, drug resistance, and tumor microenvironment remodeling. This review aims to comprehensively synthesize recent advances in the regulatory mechanisms of the Hippo/YAP pathway and critically evaluate its therapeutic implications, including emerging clinical interventions and epigenetic modulation.
Methods:A systematic literature review was conducted to synthesize mechanistic studies, translational research, and clinical trials involving the Hippo/YAP pathway in CRC. We focused on elucidating its upstream and downstream interactions, crosstalk with other signaling cascades, and the dual oncogenic/tumor-suppressive roles of YAP/TAZ. Epigenetic regulatory mechanisms (e.g., DNA methylation, histone modifications) and non-coding RNA-mediated regulation were rigorously analyzed. Additionally, therapeutic strategies targeting the Hippo pathway—including clinical agents, molecular inhibitors, non-coding RNAs (ncRNAs), and natural products—were systematically evaluated to assess their clinical potential.
Results:Hippo pathway dysregulation drives CRC progression through aberrant YAP activation, which promotes tumor proliferation, metastasis, metabolic reprogramming, and immune evasion. Notably, emerging evidence reveals context-dependent tumor-suppressive functions of YAP/TAZ in specific CRC subtypes, such as via suppression of Wnt signaling. Epigenetic mechanisms, including DNA methylation and histone modifications, further fine-tune YAP activity. Preclinical and clinical investigations highlight the efficacy of diverse Hippo/YAP-targeted interventions, with recent clinical trials (e.g., VT3989, IK-930, IAG933, ION537) underscoring the translational promise of this pathway.
Conclusions:The Hippo/YAP axis serves as a central hub in CRC biology, exhibiting context-dependent dual roles in both oncogenesis and tumor suppression. Integrating cutting-edge insights into its regulatory networks and clinical targeting offers novel perspectives for precision oncology. By bridging fundamental discoveries with translational applications, this review establishes Hippo/YAP as a compelling therapeutic target and provides a theoretical foundation for developing innovative CRC therapies.