STATEMENT OF PROBLEMPhosphoric acid is commonly used in dentistry as an etchant but can result in excessive demineralization of dentin, a major contributor to the instability of dentin-bonded restorations. Nevertheless, research on the development of etchants that can reduce acid damage is sparse.PURPOSEThe purpose of this in vitro study was to investigate the effects of polyvinylpyrrolidone-modified phosphoric acid on the dentin bonding of an etch-and-rinse adhesive.MATERIAL AND METHODSProtective etchants were prepared by adding polyvinylpyrrolidone to 35% phosphoric acid aqueous solutions: the 3 concentrations were 0.5% (P0.5% group), 1% (P1% group), and 2% (P2% group) w/v. The treatment agent of the control group (C) was 35% phosphoric acid gel. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), microhardness, microtensile bonding strength (µTBS), nanoleakage, and in situ zymography were used to evaluate the appearance of the protective etchant on dentin bonding. The results were analyzed with a 1-way ANOVA test (α=.05).RESULTSSEM showed no obviously exposed collagen fiber in the P1% and P2% groups. FTIR showed less demineralization of the dentin surface, and microhardness was higher after treatment with the protective etchant (P<.05). The µTBS of P1% (70 ±9.2 MPa) was the highest, and group C (44 ±5.8 MPa) was the lowest in all groups (P<.05). Moreover, there was weaker MMP activity in the P1% and P2% groups (P<.05).CONCLUSIONSThis study demonstrated that the protective etchant effectively reduced demineralization, enhanced bond strength, and reduced nanoleakage and enzyme activity within the hybrid layer.