Cancer stem cells (CSCs) contribute to pancreatic cancer tumorigenesis through tumor initiation, drug resistance, and metastasis. Currently, therapeutics targeting pancreatic CSCs are under intensive investigation. This study tested a novel strategy that utilizes the RON receptor as a drug delivery moiety for increased therapeutic activity against pancreatic CSCs. CD24(+)CD44(+)ESA(+) triple-positive pancreatic CSCs (CSCs(+24/44/ESA)) were obtained from spheroids of pancreatic L3.6pl cancer cells by sequential magnetic cell sorting methods. These cells displayed a spherical growth pattern, expressed the unique self-renewal marker Bmi-1, redifferentiated into an epithelial phenotype, acquired an epithelial to mesenchymal phenotype, and caused tumor formation in animal models. Among several receptor tyrosine kinases examined, RON was highly expressed and sustained by CSCs(+24/44/ESA). This feature provided the cellular basis for validating the therapeutic effectiveness of anti-RON antibody Zt/c9-directing doxorubicin-immunoliposomes (Zt/c9-Dox-IL). Zt/c9-Dox-IL specifically interacted with CSCs(+24/44/ESA) and rapidly caused RON internalization, which led to the uptake of liposome-coated Dox. Moreover, Zt/c9-Dox-IL was effective in reducing viability of L3.6pl cells and CSCs(+24/44/ESA). The IC(50) values between free Dox (62.0 ± 3.1 μM) and Zt/c9-Dox-IL (95.0 ± 6.1 μM) treated CSCs(+24/44/ESA) were at relatively comparable levels. In addition, Zt/c9-Dox-IL in combination with small molecule inhibitors lapatinib, sunitinib, or dasatinib further reduced the viability of CSCs(+24/44/ESA). In conclusion, RON expression by CSCs(+24/44/ESA) is a suitable molecule for the targeted delivery of chemoagents. The anti-RON antibody-directed delivery of chemotherapeutics is effective in reducing viability of pancreatic CSCs.