Defective angiogenesis is a characteristic of many diseases, notably cancer and immune-mediated conditions. Numerous shortcomings in anti-angiogenic therapies, including undesirable effects, drug resistance, and cancer recurrence, encouraged the development of innovative medicines with improved anti-angiogenic efficacy. Indole analogues are thought to interact with the mitotic spindle, preventing malignant human cells from multiplying and invading. N'-(1-Benzyl-2-oxoindolin-3-ylidene)-5-bromo-1H-indole-2-carbohydrazide (N-5-BIC) represents one of these chemicals exhibiting remarkable anti-angiogenesis and anti-proliferation features. The study aimed to investigate the antiangiogenic, antioxidant, and antiproliferative activities of a carbohydrazide indole derivative, N-5-BIC. The ex vivo rat aorta ring (RAR), DPPH, and chick chorioallantois membrane (CAM) assays were employed to assess the N-5-BIC antiangiogenic and antioxidant activities. The MTT assay investigated the anti-proliferative activity in the human umbilical vascular endothelial cells (HUVEC) cell line. The VEGF gene expression level in the colon cancer (HCT116) cell line was evaluated using quantitative real-time polymerase chain reaction (RT-PCR). N-5-BIC demonstrated a substantial and dose-dependent inhibition of blood vessel growth, resulting in an 87.37% reduction at a concentration of 100 μg/ml compared to the negative control (DMSO 1%) in the RAR assay. Additionally, N-5-BIC exhibited a significant decrease in DPPH free radicals in a concentration-dependent manner, with an IC50 value of 129.6 µg/ml. The in vivo CAM assay confirmed a significant regression in blood vessels compared to the negative control. Furthermore, N-5-BIC demonstrated low to non-toxic effects on the HUVEC cell line, with an IC50 value of 1681 μg/ml. The RT-PCR study revealed a significant reduction in VEGF gene expression at doses of 200 and 400 µg/ml as compared to control cells. N-5-BIC has resilient anti-angiogenic properties, which may be attributed to its extensive anti-proliferative and free radical neutralizing properties.