Microplastics (MPs) are global environmental pollutants with potential toxicity concerns, and their effects on the reproductive system have attracted increasing attention. This study investigated the interaction between MPs and mammalian biomolecules, focusing on the relationship between the testosterone adsorption behavior of MPs and male reproductive health. The adsorption capacity of different types of MPs for testosterone was evaluated in vitro experiments. Polyamide (PA)-MPs exhibited stronger adsorption, while polymethyl methacrylate (PMMA)-MPs displayed the weakest adsorption. Sorption equilibrium between PA-MPs and testosterone was achieved within 6 h, fitting the Pseudo-2nd-order model and Langmuir isotherm. The effects of MPs on male reproduction in mice was determined in vivo experiments. Male mice were treated with 0.1 and 0.5 mg/d PA-MPs/PMMA-MPs by gavage once per day for 28 days. The results showed that only 0.5 mg/d PA-MP exposure induced decreased serum testosterone levels, increased testicular testosterone levels compared to the control, and more severe damage to seminiferous tubule structure, sperm motility and sperm morphology compared to the PMMA-MPs group. Meanwhile, PA-MPs could reduce intracellular nuclear translocation of androgen receptor (AR) mediated by testosterone, while PMMA-MPs had no impact. The study revealed that PA-MP adsorption reduced testosterone bioavailability and caused sperm quality to decline, offering new insights into the combined toxicity mechanism of MPs in male mammals.