Glucagon-like peptide-1 (GLP-1) is an incretin hormone that decreases postprandial glycemic excursions by enhancing insulin secretion but with short half-life due to rapid inactivation by enzymatic N-terminal truncation. Therefore, efforts are being made to improve the stability of GLP-1 via modifying its structure or inhibiting dipeptidyl-peptidase IV (DPP IV), which is responsible for its degradation. Here we report a novel GLP-1 analog BPI3006 with -NHCO- of Ala(8) replaced by -CH(CF(3))NH- and features of its metabolic stability, GLP-1 receptor trans-activation and in vivo biological activity. BPI3006 is highly resistant to DPP IV-mediated degradation with 91.1% of parental peptide left after 24h exposure to the enzyme. BPI3006 also effectively activates its target gene promoter through GLP-1 receptor activation by measuring the transiently transfected reporter gene green fluorescence protein (GFP) expression in NIT-1 cells. Furthermore, BPI3006 could well restrain the glycemia variation in fasted normal ICR mice after a single administration followed by an oral glucose loading. In spontaneous type 2 diabetic KKA(y) mice, BPI3006 injected twice daily could significantly improve the oral glucose tolerance and hyperinsulinemia, as well as ameliorate the food and water consumption. In conclusion, BPI3006 has enhanced resistance to DPP IV leading to improved stability, and shows excellent in vivo biological activity. Thus it may be a new candidate for T2DM treatment and its novel modification may provide valuable guidance for the future development of long-acting GLP-1 analogs.