The objective of our study was to prepare mesoporous silica nanoparticles with a core-shell structure (CSMSNs) and improve the dissolution and bioavailability of celecoxib (Cxb), a water-insoluble drug, by changing its needle-like crystal form. CSMSNs are prepared by a core-shell segmentation self-assembly method. The SBET and Vt of CSMSNs were 890.65 m2/g and 1.23 cm3/g, respectively. Cxb was incorporated into CSMSNs by the solvent evaporation method. The gastrointestinal irritancy of the CSMSNs was evaluated by a gastric mucosa irritation test. In vitro dissolution and in vivo pharmacokinetic tests were carried out to study the improvement in the dissolution behavior and oral bioavailability of Cxb. In conclusion, gastric mucosa irritation study indicated the good biocompatibility of CSMSNs. The cumulative dissolution of CSMSNs-Cxb is 86.2% within 60 min in SIF solution, which may be ascribed to the crystal form change caused by control of the nanochannel for CSMSNs. Moreover, CSMSNs could enhance the 9.9-fold AUC of Cxb. The cumulative dissolution and bioavailability of Cxb were both significantly enhanced by CSMSNs. CSMSNs with a core-shell structure are suitable as a carrier for a poorly water-soluble drug (Cxb).