The extracellular α(+)/γ2(-) interface in the α1,2,3,5βγ2 GABAA receptor harbours the allosteric binding site targeted by benzodiazepines and newer generations of subtype-selective modulators. We have probed the molecular determinants for the affinity/potency-based α1-preference exhibited by the hypnotic zolpidem (Ambien®, Stilnox®) and the efficacy-based α3-over-α1 selectivity displayed by the analgesic NS11394. Binding affinities and functional properties of the modulators were characterized at wild-type, concatenated, mutant and chimeric α1,3β2γ2S receptors expressed in tsA201 cells and Xenopus oocytes by [3H]flumazenil binding and two-electrode voltage clamp electrophysiology. Substitution of Gly201 in α1 with the corresponding Glu in α3 completely eliminated the α1-over-α3 preference exhibited by zolpidem. In contrast, the reverse α3-E225G mutation did not yield corresponding increases in the binding affinity or modulatory potency of zolpidem at α3β2γ2S, and two additional molecular elements in the extracellular domain of the α-subunit were found also to contribute to its α1-preference. Interestingly, the α1-Gly201/α3-Glu225 residue was also a key determinant of the efficacy-based α3-over-α1 selectivity exhibited by NS11394, and a pronounced correlation existed between the side-chain bulkiness of this residue and the modulatory efficacy of NS11394 at the receptor. The subtype-selectivity determinants identified for zolpidem and NS11394 were found also to apply in different degrees to the α1-preferring modulator indiplon and the α3-over-α1 selective modulator L-838,417, respectively. In conclusion, the molecular origins of subtype-selectivity exhibited by benzodiazepine-site modulators at the α1,2,3,5βγ2 GABAA receptor seem more complex than previously appreciated, and the importance of the α1-Gly201/α3-Glu225 residue for both potency- and efficacy-based subtype-selective modulation through this site is likely to be rooted in different molecular mechanisms.