Gemcitabine (dFdC) and emtricitabine (FTC) are first-line drugs that are used for the treatment of pancreatic cancer and human immunodeficiency virus, respectively. The above drugs must undergo sequential phosphorylation to become pharmacologically active. Interindividual variability associated with the responses of the above drugs has been reported. The molecular mechanisms underlying the observed variability are yet to be elucidated. Although this could be multifactorial, nucleotidases may be involved in the dephosphorylation of drug metabolites due to their structural similarity to endogenous nucleosides. With these in mind, we performed in vitro assays using recombinant nucleotidases to assess their enzymatic activities toward the metabolites of dFdC and FTC. From the above in vitro experiments, we noticed the dephosphorylation of dFdC-monophosphate in the presence of two 5'-nucleotidases (5'-NTs), cytosolic 5'-nucleotidase IA (NT5C1A) and cytosolic 5'-nucleotidase III (NT5C3), individually. Interestingly, FTC monophosphate was dephosphorylated only in the presence of NT5C3 enzyme. Additionally, nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1) exhibited enzymatic activity toward both triphosphate metabolites of dFdC and FTC. Enzyme kinetic analysis further revealed Michaelis-Menten kinetics for both NT5C3-mediated dephosphorylation of monophosphate metabolites, as well as NTPDase 1-mediated dephosphorylation of triphosphate metabolites. Immunoblotting results confirmed the presence of NT5C3 and NTPDase 1 in both pancreatic and colorectal tissue that are target sites for dFdC and FTC treatment, respectively. Furthermore, sex-specific expression patterns of NT5C3 and NTPDase 1 were determined using mass spectrometry-based proteomics approach. Based on the above results, NT5C3 and NTPDase 1 may function in the control of the levels of dFdC and FTC metabolites. SIGNIFICANCE STATEMENT: Emtricitabine and gemcitabine are commonly used drugs for the treatment of human immunodeficiency virus and pancreatic cancer. To become pharmacologically active, both the above drugs must be phosphorylated. The variability in the responses of the above drugs can lead to poor clinical outcomes. Although the sources of drug metabolite concentration variability are multifactorial, it is vital to understand the role of nucleotidases in the tissue disposition of the above drug metabolites due to their structural similarities to endogenous nucleosides.