Melatonin has been found to be crucial in the growth and development of plants under stress conditions. In this study, the effects of melatonin and nano melatonin regarding the growth and development of tomato plants, along with their photosynthetic pigment, phenol, and antioxidant activity, were investigated under saline conditions. The study was conducted using a completely randomized design with three replications, and the applied treatments were salt stress and foliar spraying of melatonin at a concentration of 0 (control), melatonin (Mel), and nano capsule-melatonin (Nano-Mel) at 500 µM. Salinity treatments included application of sodium chloride with two concentration of 0 mM NaCl (S1) and 50 mM NaCl (S2). Under saline conditions, Mel and Nano-Mel increased both shoot and root fresh and dry weights, improved relative water content (RWC), and enhanced antioxidant activity and phenolic content. Salinity elevated leaf ABA content, unaffected by Mel or Nano-Mel. Chlorophyll fluorescence and SPAD values demonstrated resilience to salinity with Mel and Nano-Mel applications. Nano-Mel notably mitigated Na + accumulation in leaves under salinity, helping maintain K + homeostasis. Proline levels rise due to salinity but decreased with Mel and Nano-Mel treatments. Electrolyte leakage (EL) increased under salinity but is significantly reduced by Mel, indicating enhanced membrane stability. The findings reveal that salinity stress significantly reduced plasma membrane intrinsic protein (PIP) expression in roots and leaves, whereas Mel and Nano-Mel treatments enhance PIP expression, particularly in roots. The study concludes that Mel and Nano-Mel effectively alleviate salinity-induced stress, promoting growth and maintaining physiological homeostasis in tomato plants.