Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the death of upper and lower motor neurons (MNs). Excessive neuronal excitability has been implicated in MN degeneration; thus, modulation of hyperexcitability appears as a promising therapeutic strategy. Potassium channels are attractive targets since they can be activated at subthreshold voltages and can regulate neuronal excitability. In this study, we assayed the effects of N-(6-Chloro-pyridin-3-yl)-3,4-difluorobenzamide compound, known as ICA-27243, as a potential treatment for ALS. ICA-27243 is a highly selective Kv7.2/7.3 opener used mainly in epilepsy models. In the in vitro model of spinal cord organotypic cultures (SCOCs) exposed to acute excitotoxicity, ICA-27243 prevented MN degeneration at a dose-of 10 μM. Administration of ICA-27243 to transgenic SOD1G93A ALS mice improved the decline of neuromuscular function, maintained locomotion and coordination in the rotarod, decreased spinal MN death and attenuated glial reactivity. In conclusion, we report here for the first time that ICA-27243 is an effective treatment for ALS, emphasizing the potential of targeting Kv channels to reduce neuronal hyperexcitability.