The oxidative dissolution of arsenopyrite (FeAsS) is a significant source of arsenic contamination in nature. Activated biochar (AC), a widely used environmental remediation agent, is prevalent in ecosystems and participated in various geochemical processes of arsenic and iron-containing sulfide minerals. However, the impact of AC-arsenopyrite association on reactive oxidation species (ROS) generation and its contribution to As transformation were rarely explored. Here, ROS formation and the redox conversion of As during the interaction between AC and arsenopyrite were investigated. AC-mediated arsenopyrite oxidation was a two-stage process. At stage I, the heterogeneous electron transfer from arsenopyrite facilitated O2 reduction on AC, enhancing arsenopyrite dissolution and ROS formation. TBA, PBQ and catalase inhibited 86.40 %, 79.39 % and 49.66 % of As(III) oxidation, respectively, indicating indicated that HO˙, (O2•)- and H2O2 were responsible for As(III) oxidation. However, at stage II, the mobility of As was highly restricted, especially increasing AC addition. Besides adsorption, AC retained appreciable As through catalyzing insoluble ferric arsenate formation and growth by promoting Fe(II) and As(III) oxidation and functioning as nuclei. These findings deepen our understanding of the coupling behavior of AC-arsenopyrite and its influence on geochemical cycling of arsenic in mined surroundings, which has important implications for mitigating arsenic pollution.