In our previous study, long-term cocultured hepatocytes were used to estimate the fraction of a drug metabolized by CYP3A4 (fm,CYP3A4). Metabolic turnover was measured with and without a CYP3A4 selective inhibitor, and the results were verified against in vivo reference data. The current study followed a similar approach using direct or time-dependent inhibitors to evaluate fm,CYP1A2, fm,CYP2C8, fm,CYP2C9, fm,CYP2C19, and fm,CYP2D6 for a set of marketed drugs. The used inhibitors were for CYP1A2 (20 μM furafylline), CYP2C8 (40 μM montelukast), CYP2C9 (40 μM sulfaphenazole), CYP2C19 (3 μM (-)N-3-benzyl-phenobarbital), and CYP2D6 (5 μM quinidine). We found that in vitro fm values above 0.5 were comparable to in vivo values, falling within a 0.5 to 2-fold error in 9 of 11 CYP1A2 substrates, 5 of 8 CYP2C8 substrates, 5 of 8 CYP2C9 substrates, 2 of 3 CYP2C19 substrates, and 11 of 20 CYP2D6 substrates. The study also showed how uncertainty in measured metabolic turnover affects the estimated fm,CYPs, revealing that when estimated fm errors are <25%, 89% of predictions are within 2-fold of in vivo fm, but this drops to 40% when there is higher uncertainty in measured turnover. Although some fm values were poorly predicted and clinical studies revealed off-target inhibition by certain inhibitors, the chemical inhibition approach using human long-term cocultured hepatocytes showed useful prediction performance for early drug discovery enabling moderate-to-sensitive drug-drug interaction risk assessments, when metabolic turnover is adequate, and inhibitor selectivity is well defined. SIGNIFICANCE STATEMENT: Calculating in vitro fraction metabolized by cytochrome P450 enzymes in liver is vital in drug discovery for assessing the object drug-drug interaction risk of new chemical entities metabolized by cytochrome P450 enzymes before clinical data are available. Despite some limitations, the current study demonstrated that using long-term cocultured hepatocytes with chemical inhibitors is a reliable method for estimating fraction metabolized by cytochrome P450 enzymes in liver, complementing the drug interaction risk assessment.