Arsenic, a carcinogenic and toxic contaminant of soil and water, affects human health adversely. During last few decades, it has been an important global environmental issue. Among several arsenic detoxification methods remediation using arsenic resistant microbes is proved to be environment-friendly and cost-effective. This study aimed to test the effects of arsenic utilizing bacterial strain Acinetobacter lwoffii (RJB-2) on arsenic uptake and growth of mung bean plants (Vigna radiata). RJB-2 exhibited tolerance up to 125mM of arsenic (V) and 50mM of arsenic (III). RJB-2 produced plant growth promoting substances e.g. indole acetic acid (IAA), siderophores, exopolysaccharide (EPS) and phosphate solubilization in the absence and in presence of arsenic. Pot experiments were used to scrutinize the role of RJB-2 on arsenic uptake and growth of mung bean plants grown in soil amended with 22.5mgkg-1 of sodium arsenate (Na2HAsO4·7H2O). RJB-2 could arrest arsenic uptake in just 7days and increase plant growth, number of plants per pot, chlorophyll and carotenoid content of the mung bean plants. RJB-2 formed biofilm and its root-association helped to abate arsenic uptake in mung bean. Confocal and light microscopic studies also revealed the abatement of arsenic uptake and increase in chlorophyll content in mung bean plants in presence of RJB-2. RJB-2 was also responsible for less production of reactive oxygen species (ROS) in mung bean plants reducing the oxidative damage caused by arsenic. The lower percentage of electrolytic leakage (EL) in RJB-2 inoculated mung bean plants proved arsenic abatement. The study also reported the distribution of arsenic in various parts of mung bean plant. RJB-2 owing to its intrinsic abilities of plant growth promotion even in presence of high concentrations of arsenic could inhibit arsenic uptake completely and therefore it could be used in large-scale cultivation for phytostabilization of plants.