Purpose::The aim of this study was to report the corneal densitometry (CD) evolution studied by Scheimpflug tomography, anterior segment optical coherence tomography (AS-OCT), and confocal microscopy changes, in patients with advanced keratoconus included in a clinical experience of advanced cell therapy using autologous humans adipose-derived adult stem cells (ADASCs) and corneal decellularized and ADASCs-recellularized human donor corneal laminas.
Methods::This study is an interventional prospective, consecutive, randomized, comparative series of cases. Fourteen patients with keratoconus were randomly distributed into 3 groups for 3 types of surgical interventions: group 1 (G-1), autologous ADASC implantation (n = 5); group 2 (G-2), decellularized human corneal stroma (n = 5); and group 3 (G-3), autologous ADASCs + decellularized human corneal stroma (n = 4). Participants were assessed with Scheimpflug-based Oculus Pentacam CD module, AS-OCT (Visante; Carl Zeiss), and confocal microscopy (HRT3 RCM Heidelberg).
Results::A significant improvement of 1 to 2 logMAR lines in all visual parameters in the 3 groups was obtained. The central and total CD were statistically significantly higher in G-2 compared with G-1 and G-3 compared with G-1 at the studied annular zones centered on the corneal apex (0–2, 2–6, and 6–10 mm). There was statistical significance higher in G-3 compared with G-2 at the central corneal stroma at 0–2 and 2–6 mm. The confocal microscopy findings and the AS-OCT reflected the densitometry changes.
Conclusions::The intrastromal implantation of ADASCs produced very subtle changes in CD at the level of the central corneal stroma. However, the intrastromal implantation of decellularized corneal laminas increases it slightly, but with lower values than the implantation of recellularized laminas with ADASCs.