The protein p53 is a transcription factor with several key roles in cells, including acting as a tumour suppressor. In most human cancers its tumour suppressor function is inactivated, either through inhibition by negative regulators or by mutation in the TP53 gene. Thus, there is a high interest in developing molecules able to activate p53 tumour suppressor activity. Tryptophanol-derived isoindolinones are known to act as wild-type and mutant p53 activators. Specifically, SLMP53-1 is a non-fluorescent wild-type and mutant p53 R280K reactivator, with potent in vivo anti-tumour activity in HCT116 and MDA-MB-231 mice xenograft models. With the aim of studying tryptophanol-derived isoindolinones intracellular localization by fluorescence microscopy, three SLMP53-1 based fluorescent probes were prepared. Here we report the design, synthesis, photophysical characterization, antiproliferative activity and cell localization studies of these fluorescent probes. The previously described structure-activity relationships of the SLMP53-1 scaffold set the basis for the design the fluorescent probes. The probes were prepared by connecting a small fluorophore (dansyl or 7-nitrobenzofurazan) to the indole nitrogen of the tryptophanol-derived oxazoloisoindolinone SLMP53-1 through two different linkers. The antiproliferative activity and cell localization studies of the three fluorescent probes were performed in HCT116 cells. The three probes showed enhanced internalization when compared with their fluorophore-linker intermediates, good photo-stability and high affinity for the endoplasmic reticulum, indicating the potential involvement of endoplasmic reticulum in the mechanism of action of tryptophanol-derived oxazoloisoindolinones.