The terminal protein in the complement cascade C5a is a potent inflammatory molecule and chemoattractant that is involved in the pathology of multiple inflammatory diseases including sepsis and arthritis, making it a promising protein to target with immunotherapies. Active immunotherapies, in which patients are immunized against problematic self-molecules and generate therapeutic antibodies as a result, have received increasing interest as an alternative to traditional monoclonal antibody treatments. In previous work, we have designed supramolecular self-assembling peptide nanofibers as active immunotherapies with defined combinations of B- and T-cell epitopes. Herein, the self-assembling peptide Q11 platform was employed to generate a C5a-targeting active immunotherapy. Two of three predicted B-cell epitope peptides from C5a were found to be immunogenic when displayed within Q11 nanofibers, and the nanofibers were capable of reducing C5a serum concentrations following immunization. Contrastingly, C5a's precursor protein C5 maintained its original concentration, promising to minimize side effects heretofore associated with C5-targeted therapies. Immunization protected mice against an LPS-challenge model of sepsis, and it reduced clinical severity in a model of collagen-antibody induced arthritis. Together, this work indicates the potential for targeting terminal complement proteins with active immunotherapies by leveraging the immunogenicity of self-assembled peptide nanomaterials. STATEMENT OF SIGNIFICANCE: Chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, and inflammatory bowel disease are currently treated primarily with monoclonal antibodies against key inflammatory mediators. While helpful for many patients, they have high non-response rates, are costly, and commonly fail as anti-drug antibodies are raised by the patient. The approach we describe here explores a fundamentally different treatment paradigm: raising therapeutic antibody responses with an active immunotherapy. We employ innovative supramolecular peptide nanomaterials to elicit neutralizing antibody responses against complement component C5a and demonstrate therapeutic efficacy in preclinical mouse models of sepsis and rheumatoid arthritis. The strategy reported may represent a potential alternative to monoclonal antibody therapies.