Chrysoeriol, a flavonoid naturally found in several plants, including Danggui Susan, a traditional herbal medicine, exhibits promising anti-inflammatory and antioxidant properties. Its potential to prevent cardiovascular diseases, primarily through inhibiting platelet activation and aggregation, has attracted significant interest. This study aimed to investigate the molecular mechanisms underlying the antiplatelet effects of chrysoeriol. The compound effectively suppressed collagen-induced platelet aggregation without inducing cytotoxicity. Chrysoeriol elevated intracellular levels of cyclic AMP (cAMP) and cyclic GMP (cGMP), enhanced inositol 1,4,5-trisphosphate receptor (IP3R) phosphorylation, and reduced cytosolic calcium (Ca²+) mobilization, all of which contributed to its antiplatelet action. Furthermore, chrysoeriol inhibited the phosphorylation of PI3K, Akt, JNK, and p38 MAPK, pathways involved in the activation of cytosolic phospholipase A2 (cPLA2) and thromboxane A2 (TXA2) production. These effects were accompanied by reduced TXA2 production and secretion of dense granules (ATP and serotonin). Chrysoeriol also impaired thrombin-induced clot retraction, further suggesting its capacity to regulate platelet responses and cytoskeletal rearrangements. These findings highlight chrysoeriol's multi-target mechanisms, including modulation of cyclic nucleotides, kinase pathways, and platelet function, offering potential as a therapeutic agent to prevent thrombotic cardiovascular events.