Bile acid (BA) synthesis is regulated through suppression of hepatic cholesterol 7α-hydroxylase via farnesoid X receptor (FXR) activation in hepatocytes and/or enterocytes; in enterocytes, this process requires FGF19 signaling. To study these pathways, we quantified markers of BA synthesis (7α-hydroxy-4-cholesten-3-one [C4]) and cholesterol production (lathosterol), fibroblast growth factor (FGF)19, and BAs in serum from healthy male volunteers given 1 oral dose of the nonsteroidal FXR agonist Px-102 (0.15 mg/kg, 0.3 mg/kg, 0.6 mg/kg, 1.12 mg/kg, 2.25 mg/kg, 3.38 mg/kg, or 4.5 mg/kg). After 8 hours, serum levels of C4 decreased by 80% in volunteers given 0.15 mg/kg, whereas serum levels of FGF19 were unchanged. Serum levels of FGF19 increased significantly, in a dose-dependent manner, in volunteers given >0.3 mg/kg Px-102, up to as much as 1600%, whereas C4 levels remained significantly reduced (by >80%). For all doses, FGF19 levels returned to normal 24 hours after administration of Px-102. Serum levels of C4 decreased before levels of FGF19 levels increased, and were still reduced by 95% 24 hours after the highest dose (4.5 mg/kg) of Px-102, even though levels of FGF19 had returned to baseline. Our findings indicate that activation of hepatic FXR is able to suppress BA synthesis, independent of FGF19.