AbstractThis study aims to determine the effects and mechanism of action of muscone on the biological activity of the gastric cancer cell lines SGC‐7901 and MGC‐803 (proliferation, apoptosis, invasion, and migration) in vitro. An optimal muscone concentration was determined using MTT and cell apoptosis tests. The SGC‐7901 and MGC‐803 cells were divided into five groups: normal control, muscone, miRNA, muscone + miRNA, and muscone + miRNA inhibitor. Cell proliferation rate, apoptosis rate, cell cycle phase distribution, number of invading cells, and wound healing rate were compared among the five groups using MTT, flow cytometry, transwell, and wound healing assays. Relative expression levels of the proteins PI3K, AKT, P21, c‐Myc, MMP‐2, and MMP‐9 were measured by Western blot. Compared with the control group, the groups treated with muscone and miRNA showed significantly lower cell proliferation rate, number of invading cells, and wound healing rate (p < .05 for all), but significantly higher rates of cell apoptosis rate and numbers of cells in the G1 phase (p < .05 for all). These groups also showed significantly lower expression of the proteins PI3K, AKT, c‐Myc, MMP‐2, and MMP‐9 but significantly increased expression of the protein P21 (p < .05). Transfecting muscone‐treated SGC‐7901 and MGC‐803 cells with miRNA‐145 inhibitor resulted in a significant recovery of biological activity (p < .05). Muscone suppresses the biological activity of SGC‐7901 and MGC‐803 gastric cancer cells in vitro via regulation of miRNA‐145.