Purpose:Caveolin (Cav) regulates various aspect of endothelial cell signaling and cell-permeable peptides (CPPs) fused to domains of Cav can reduce retinal damage and inflammation in vivo. Thus, the goal of the present study was to identify a novel CPP that improves delivery of a truncated Cav modulator in vitro and in vivo.
Methods:Phage display technology was used to identify a small peptide (RRPPR) that was internalized into endothelial cells. Fusions of Cav with the peptide were compared to existing molecules in three distinct assays, vascular endothelial growth factor-A (VEGF) induced nitric oxide (NO) release, VEGF induced vascular leakage, and in a model of immune mediated uveitis.
Results:RRPPR was internalized efficiently and was potent in blocking NO release. Fusing RRPPR with a minimal Cav inhibitory domain (CVX51401) dose-dependently blocked NO release, VEGF induced permeability, and retinal damage in a model of uveitis.
Conclusions:CVX51401 is a novel Cav modulator that reduces VEGF and immune mediated inflammation.
Translational Relevance:CVX51401 is an optimized Cav modulator that reduces vascular permeability and ocular inflammation that is poised for clinical development.