This work aimed at building functional emulsions based on the linear dextrins (LDs) emulsion system. The gradient polyethylene glycol (PEG) precipitaion method was used to fractionate LDs into fractions with different degrees of polymerization (DP). A package, and co-precipitation procedure of LDs, and eicosapentaenoic acid (EPA) was used to fabricate LDs-EPA composites. The gas chromatograph, Fourier transform infrared spectroscopy, X-ray diffraction and differential scanning calorimetry analyses affirmed the formation of the LDs-EPA composites. The sizes of these composites were 38.55 nm, 59.14 nm to 80.62 nm, respectively, and they had good amphiphilicity. Compared with LDs, these LDs-EPA composites stabilized Pickering emulsion had higher stability and antioxidant capacity. Their emulsifying ability was positively correlated with the DP values of LDs. Furthermore, the oxidation stability results showed that LDsF10-EPA emulsion had the lowest lipid hydroperoxide (LHs) content, malondioxide (MDA) content and hexal concentration, which were 138.75 mmol kg-1 oil, 15.50 mmol kg-1 oil and 3.83 μmol kg-1 oil, respectively. The study provided a new idea and application values for the application of LDs in emulsion.