New findings support long-proposed process of planet formation

2023-11-08
临床结果
Scientists just made a breakthrough discovery in revealing how planets are made. By observing water vapor in protoplanetary disks, they confirmed a physical process involving the drifting of ice-coated solids from the outer regions of the disk into the rocky-planet zone. Scientists using NASA's James Webb Space Telescope just made a breakthrough discovery in revealing how planets are made. By observing water vapor in protoplanetary disks, Webb confirmed a physical process involving the drifting of ice-coated solids from the outer regions of the disk into the rocky-planet zone. Theories have long proposed that icy pebbles forming in the cold, outer regions of protoplanetary disks -- the same area where comets originate in our solar system -- should be the fundamental seeds of planet formation. The main requirement of these theories is that pebbles should drift inward toward the star due to friction in the gaseous disk, delivering both solids and water to planets. A fundamental prediction of this theory is that as icy pebbles enter into the warmer region within the "snowline" -- where ice transitions to vapor -- they should release large amounts of cold water vapor. This is exactly what Webb observed. "Webb finally revealed the connection between water vapor in the inner disk and the drift of icy pebbles from the outer disk," said principal investigator Andrea Banzatti of Texas State University, San Marcos, Texas. "This finding opens up exciting prospects for studying rocky planet formation with Webb!" "In the past, we had this very static picture of planet formation, almost like there were these isolated zones that planets formed out of," explained team member Colette Salyk of Vassar College in Poughkeepsie, New York. "Now we actually have evidence that these zones can interact with each other. It's also something that is proposed to have happened in our solar system." Harnessing the Power of Webb The researchers used Webb's MIRI (the Mid-Infrared Instrument) to study four disks -- two compact and two extended -- around Sun-like stars. All four of these stars are estimated to be between 2 and 3 million years old, just newborns in cosmic time. The two compact disks are expected to experience efficient pebble drift, delivering pebbles to well within a distance equivalent to Neptune's orbit. In contrast, the extended disks are expected to have their pebbles retained in multiple rings as far out as six times the orbit of Neptune. The Webb observations were designed to determine whether compact disks have a higher water abundance in their inner, rocky planet region, as expected if pebble drift is more efficient and is delivering lots of solid mass and water to inner planets. The team chose to use MIRI's MRS (the Medium-Resolution Spectrometer) because it is sensitive to water vapor in disks. The results confirmed expectations by revealing excess cool water in the compact disks, compared with the large disks. As the pebbles drift, any time they encounter a pressure bump -- an increase in pressure -- they tend to collect there. These pressure traps don't necessarily shut down pebble drift, but they do impede it. This is what appears to be happening in the large disks with rings and gaps. Current research proposes that large planets may cause rings of increased pressure, where pebbles tend to collect. This also could have been a role of Jupiter in our solar system -- inhibiting pebbles and water delivery to our small, inner, and relatively water-poor rocky planets. Solving the Riddle When the data first came in, the results were puzzling to the research team. "For two months, we were stuck on these preliminary results that were telling us that the compact disks had colder water, and the large disks had hotter water overall," remembered Banzatti. "This made no sense, because we had selected a sample of stars with very similar temperatures." Only when Banzatti overlaid the data from the compact disks onto the data from the large disks did the answer clearly emerge: the compact disks have extra cool water just inside the snowline, at about ten times closer than the orbit of Neptune. "Now we finally see unambiguously that it is the colder water that has an excess," said Banzatti. "This is unprecedented and entirely due to Webb's higher resolving power!"
更多内容,请访问原始网站
文中所述内容并不反映新药情报库及其所属公司任何意见及观点,如有版权侵扰或错误之处,请及时联系我们,我们会在24小时内配合处理。
适应症
-
靶点
-
药物
-
立即开始免费试用!
智慧芽新药情报库是智慧芽专为生命科学人士构建的基于AI的创新药情报平台,助您全方位提升您的研发与决策效率。
立即开始数据试用!
智慧芽新药库数据也通过智慧芽数据服务平台,以API或者数据包形式对外开放,助您更加充分利用智慧芽新药情报信息。