Cerebral palsy (CP) is a movement and posture disorder that affects over 50 million people worldwide. Human umbilical cord-derived mesenchymal stem cell (hUC-MSC) transplantation has emerged as an attractive therapeutic strategy for CP. The administration route appears to be crucial for hUC-MSC to provide adequate neuroprotection. Wistar rats were given hypoxia-ischemia to make the CP model on postnatal day 5. On postnatal day 21, DiR-labeled hUC-MSC were transplanted into the CP rats by intravenous, intrathecal, and lateral ventricle for cell tracking. Uninfused CP rats served as the negative control. The motor behavioral and pathological alteration was analyzed 11, 25, and 39 days after transplantation to assess motor function, immune inflammation, neurotrophy, and endogenous repair. In vivo imaging tracking techniques revealed that intravenous infusion resulted in fewer transplanted cells in the target brain than intrathecal and lateral ventricle infusion (p<0.05). Three different routes of hUC-MSC infusion improved the motor function of CP rats (p<0.05). At 11 days post-infusion, intrathecal infusion outperformed intravenous with a significant neurotrophic and oligodendrocyte maturation effect (p<0.05). Intrathecal infusion equaled lateral ventricle infusion after 25 days. At 39 days post-infusion, lateral ventricle infusion exceeded intravenous and intrathecal infusion with a significant immunosuppressive effect (p<0.05). Considering the improved effect and less trauma shown early in the intrathecal infusion, repeated intrathecal administration may ultimately lead to the greatest benefit.