ABSTRACTBacterial sexually transmitted infections are widespread and common, withNeisseria gonorrhoeae(gonorrhea) andChlamydia trachomatis(chlamydia) being the two most frequent causes. If left untreated, both infections can cause pelvic inflammatory disease, infertility, ectopic pregnancy, and other sequelae. The recommended treatment for gonorrhea is ceftriaxone plus azithromycin (to empirically treat chlamydial coinfections). Antibiotic resistance to all existing therapies has developed in gonorrheal infections. The need for new antibiotics is great, but the pipeline for new drugs is alarmingly small. The aminomethyl spectinomycins, a new class of semisynthetic analogs of the antibiotic spectinomycin, were developed on the basis of a computational analysis of the spectinomycin binding site of the bacterial 30S ribosome and structure-guided synthesis. The compounds display particular potency against common respiratory tract pathogens as well as the sexually transmitted pathogens that cause gonorrhea and chlamydia. Here, we demonstrate thein vitropotencies of several compounds of this class against both bacterial species; the compounds displayed increased potencies againstN. gonorrhoeaecompared to that of spectinomycin and, significantly, demonstrated activity againstC. trachomatisthat is not observed with spectinomycin. Efficacies of the compounds were compared to those of spectinomycin and gentamicin in a murine model of infection caused by ceftriaxone/azithromycin-resistantN. gonorrhoeae; the aminomethyl spectinomycins significantly reduced the colonization load and were as potent as the comparator compounds. In summary, data produced by this study support aminomethyl spectinomycins as a promising replacement for spectinomycin and antibiotics such as ceftriaxone for treating drug-resistant gonorrhea, with the added benefit of treating chlamydial coinfections.