100 项与 CLARA OPTICS, INC. 相关的临床结果
0 项与 CLARA OPTICS, INC. 相关的专利(医药)
7月12日,英伟达宣布向Recursion投资5000万美元,以加速人工智能药物发现领域的突破性基础模型。此举引发了业内的广泛关注,和二级市场相关标的股价的暴涨。实际上,英伟达布局AI制药的节奏,是稍显迟疑的。早在2018年,英伟达推出专门针对医疗场景的Clara平台。随后,Clara从影像学AI研究工具逐步拓展边界,开始涉足基因组学。Clara平台很快成为新药研发中的高效工具,它可以用于药物设计,通过不同AI生成分子,来完成蛋白质生成、分子生成与对接等任务,甚至可以预测蛋白质和分子的三维相互作用,从而优化药物在体内的作用方式。到2023年3月,英伟达已经与包括新药研发在内的全球100多家企业就Clara模型合作。但投向Recursion的5000万美元,却是英伟达在全球AI制药领域的第一笔直接投资。这家成立于2013年的老牌AI制药企业,主要运用细胞的纤维图像特征来进行药物筛选,底层逻辑与一众同行相差很大。Recurison的特点在于,通过干湿实验闭环高通量地并行多个试验。首先,在实验室里通过各种方式使人体细胞生病,拍摄这些生病的细胞。然后,让机器学习程序来学习这些生病细胞与健康细胞的区别。最后,将各种药物作用于患病细胞,通过机器学习程序来判断细胞是否回归健康状态,从而判断药物的作用效果。在Recurison的AI制药流程中,细胞层面的基础研究是关键一环。这背后,是一种从复杂的生命现象本质出发去寻找靶点、开发药物的逻辑。在传统用药物研发数据训练的AI制药模型稍显疲态的当下,将AI制药的链条再延长,正在成为一种新的思路。消失的DSP-1181与跑不动的AI新药2022年夏天刚到,在资本市场聚光灯下狂奔不到2年后,AI制药迎来首度降温。除了大范围趋冷的外部环境外,被寄予厚望的超级明星产品高调进入临床试验阶段,却迅速遭遇滑铁卢,踩下了AI制药发展的一脚急刹车。2022年7月,由于临床试验I期不符合预期标准,住友制药宣布停止DSP-1181的开发。随即,DSP1181从Exscientia、住友制药的官方网站上双双消失。自此,开发世界上首个由AI设计的药物分子的尝试,以失败告终。早在2014年,Exscientia的自动生成化合物的技术,和基于知识的人工智能预测模型,令住友制药十分青睐,双方随即达成合作。住友制药成为全球最早与AI公司展开合作的制药公司之一。在此后的多年间,住友制药和Exscientia共同发力,最终选定开发用于治疗精神疾病的单胺G蛋白偶联受体(GPCR)药物。合作中,住友制药的化学团队合成Exscientia提出的化合物,药理学团队对这些化合物进行评估,两家公司一起共享活性数据,继续改进药物。基于Exscientia的AI算法模型,双方在不到1年的时间里测试合成了多达350种化合物,DSP-1181是项目启动以来合成的第350种化合物。彼时,行业内完成这项工作的平均耗时超过5年。此外,双方还在在项目过程中合成类似物。住友制药的化学家同步合成了Exscientia提出的化合物中间体,还设计和合成了一些具有假定药理学数据的化合物,并将这些数据输入Exscientia的预测模型。其中包括为优化化合物结构提供重要构效关系的化合物,这进一步加快了药物发现周期,并使公司在短时间内发现DSP-1181。2020年初,Exscientia高调宣布,其与日本住友制药合作开发的DSP-1181,进入I期临床试验。DSP-1181启动临床试验之初,住友制药非常兴奋,忍不住夸赞Exscientia采用的创新方法将对中枢神经系统药物做出巨大贡献。对于DSP-1181的失败终局,有研究者指出,根本原因在于药物分子本身不够创新。美国化学文摘社(CAS)的托德·威尔斯(Todd Wills),曾对DSP-1181进行了详细分析,发现DSP-1181作用的受体,是抗精神病药物非常重要的经典靶点。换言之,DSP-1181的开发,其实并没有偏离最初的靶点。而在对DSP-1181的专利系统研究后,Wills发现,DSP-1181分子与氟哌啶醇非常相似,后者是FDA在1967年批准的典型抗精神病药物。从这个意义上讲,Exscientia很可能在一个长期发现的分子骨架上进行优化。DSP-1181的失败,给AI制药的高光时刻蒙上了阴影,却也给这个行业带来关键的转折。在那以后,人们谈及AI制药,除了算法、数据之外,也逐步偏重实验室里的开创新研究。走过了早期技术、数据积累阶段的迷茫,对于如今的AI制药而言,构建一支临床试验管线,并不太不稀奇。据智药局统计,由冰洲石生物、锐格医药、英矽智能、红云生物等国内AI制药企业开发的新药管线,纷纷进入临床试验阶段。6月末,英矽智能更是在全球率先完成了AI药物INS018_055在II期临床试验的首位患者给药。真正难的是,如何将临床试验推进下去,许多AI药物被卡在I期临床试验。另据智药局统计,在全球80条获批临床的AI药物管线中,只有29条研发管线推进到临床试验Ⅱ期,没有AI药物管线进入了更后期的阶段。蒙眼狂奔10年后,AI制药开始有点跑不动。除了倒在I期临床试验的DSP-1181外,此前不久,另一家英国AI制药头部企业Benevolent AI也宣布,一款用于治疗特应性皮炎的候选药物在二期临床试验中未能达到次要疗效终点。而大刀阔斧做AI新药的英矽智能,在谈及II期临床试验时,表现得极为慎重。奋力的单点突破尽管已经几起几落,对于AI制药,行业内却尚形成没有明确的定义。人们把利用机器学习、深度学习、自然语言处理、知识图谱等人工智能(AI)技术来进行药物化学分子分析、靶点发现、化合物筛选,甚至临床试验研究等新药研发相关工作的尝试,即为AI制药。在很多场合,AI制药被视为提升新药研发效率的终极解决方案。但脱离了严格制药逻辑的AI技术,是以一种相互割裂的方式,在单点突破新药研发中的核心环节。具体而言,在上一阶段的探索中,AI制药被用来完成发现新靶点、筛选化合物这两件极繁琐,却极重要的工作。一方面,人们希望依托AI制药强大的计算、分析能力,来发现充分挖掘难成药靶点的潜能,绕开同质化的红海竞争。数据统计,在人类蛋白质组中,难成药靶点占了75%以上,一半以上的人类疾病,在临床上尚无药可医。而对于被验证有效的靶点,比如PD-1、GLP-1等,则往往短期内涌入数百家药企,争相开发。至今,AI制药已经被用来替代常规新药研发中的许多环节。比如靶点确认,这是药物开发中的关键步骤,也是最复杂的步骤之一。现阶段,被用于新药研发的大多数靶点是蛋白质。在基于AI的靶点发现中,研究者首先从蛋白质的序列、结构、功能中提取原始特征,随后通过机器学习的方法,构建准确、稳定的蛋白质模型,最后用这一模型进行靶点功能的推断、预测和分类。这已经成为AI靶点研究的重要手段。除了结构学数据外,从患者的样本中、海量的生物医学资料中提取基因组学、蛋白质组学、代谢组学等多组学数据,借助深度学习来分析非疾病和疾病状态之间的差异,也可用来发现对疾病有影响的蛋白质。另一方面,AI技术可能简化药物筛选、合成,降低成本。对于筛选出来得化合物,往往还需要进行溶解度、活性/选择性、毒性、代谢、药代动力/药效以及可合成性等维度条件。这将涉及反复多次的实验过程,费时费力,抬高临床前研究成本。而这种高度重复、涉及大量计算的工作,正是计算机程序所擅长。在这个过程中,AI技术用来实现分子生成,即让机器学习的方法来产生新的小分子。具体而言,AI可以通过对海量的化合物或者药物分子的学习,获得化合物分子结构和成药性方面的规律,进而根据这些规律生成很多自然界从未存在过的化合物作为候选药物分子,有效构建拥有一定规模且高质量的分子库。此外,AI技术还被用来完成化学反应设计和化合物筛选。目前,AI正在取得进展的化学领域之一是对化学反应和合成路线进行建模和预测。基于AI技术,将分子结构映射为可以由机器学习算法处理的形式,根据已知化合物的结构,形成多条合成路线,并推荐最佳合成路线。反过来,在给定反应物的情况下,深度学习、迁移学习可以预测化学反应结果。AI技术甚至还可用来探索新的化学反应。在化合物筛选中,AI技术被用来对化合物的化学结构与生物活性之间的关系进行建模,预测化合物的作用机制。可以说,在每一个独立的节点上,AI制药都已经做到很出色。但这种出色,很难延续到计算机软件之外。除了跑不动的临床试验,AI制药在药企内部颇受诟病,已经是公开的现象。在动脉网的访谈中,被AI制药工程师吐槽分子活性低、制作周期长,被药物化学专家嫌弃技术平台操作困难,几乎成了很多AI制药企业躲不开的宿命。回过头看,AI制药与药企之间形成鸿沟,一个不可忽视的原因在于,前者追求效率,通过压缩开发时间来验证自身价值,而后者则强调品质,要经过反复论证,来选定好的标的,再推进。从某种意义上讲,AI制药走的是直线,奋力向前跑,而新药研发的过程则更像一个闭环,可以推翻、再重来。而AI制药的切实落地,或许需要停下单点突破的尝试,转而融入新药研发的闭环思路。回归做药的真规则“越辣越多的药企在搭建自动化的实验室,”一位投资人告诉动脉网,“在药物发现、化学合成等环节引入AI技术,几乎成为创新药企业的标配。”更有从业者表示,如果自动化的智能实验室提升新药研发效率的功能被验证,将引发大药企的新一轮基建高潮。动脉网整理公开数据发现,过去2年间,AI制药企业纷纷斥资建设自动化实验室,Exscientia、Relay therapeutics、Instro、BenevolentAI、晶泰科技、英矽智能等领先的AI制药企业相继构建了干湿闭环的实验室环境,而辉瑞、阿斯利康、礼来等跨国药企也纷纷为基于AI技术的药物研发自动化实验室买单。比如,在位于瑞典哥德堡的AstraZeneca iLab,阿斯利康探索构建全自动药物化学实验室,将新药研发的设计、制造、测试、分析(DMTA)闭环与AI新药研发企业Molecular AI的技术平台无缝集成。其中,AI技术主要完成DMTA闭环中的设计、分析环节,利用AI和机器学习,来帮助化学家更快地做出更好的决策,实现化学家与计算机的有效交互,从而加快化学空间的探索和潜在新药分子的设计。再如,辉瑞则与晶泰科技合作,利用“AI预测+实验验证”方法来加速新药研发,后者在上海建立了自动化实验室。“药物的开发是一个多维同步优化的过程,”有从业者向动脉网表示,新药研发的数据规模极大,类型、结构也颇为复杂,构建干湿实验室闭环,可以更高效地完成设计、验证的虚幻。一方面,药企形成了更体系化的数据管理方式。传统的药物研发,即以实验科学为主。在过往的新药研发中,数据的记录、治理和储存方式,都以实验为核心,需要根据实验需求动态调整。换言之,数据只是实验的副产品。而AI作为虚拟科学、计算科学和数据科学范畴内的方法,数据的重要性不言而喻。这就要求,药企在药物研发中,严格规范数据的格式、标准、质量、数量等。另一方面,AI制药企业的算法模型也得以针对性地优化,而不是简单地调用。AI与制药这一传统行业的核心业务深度融合,强调深刻的行业理解力和更高的技术准确率。除了从大量的存量论文、实验数据中挖掘新知识,还要具备充分发掘提炼实时实验数据的能力,并根据数据反馈,优化模型、迭代算法。“除了算法模型、数据,AI制药越来越多关注生物学层面的问题。”另一位从业者指出。诚然,单纯依靠实验本身,只能验证成形的假设,而AI制药面对的,却是一个更加复杂的体系,有许多问题仍然未知。近年来,基于表型的药物发现方式开始受到关注,即直接使用生物系统进行新药筛选。生命科学的问题何其错综复杂!比做一个有专利分子更底层的逻辑是,对生物学机理的理解,可以破解AI制药的最终难题。行业里的新变化,或许代表着AI制药运行模式的某种正转变,从基于药企实验室的数据、临床数据、理想生物学模型做相对割裂的独立开发,向上游回溯,去用数学方法尝试从生物学视角解构疾病机理,以终为始地去找寻药物。而这个过程,无疑会涉及更庞大的数据分析、计算,这也是英伟达这样具备掌控算力的企业深度参与其中的重要原因。“不能用低维模型解释高维问题,只有建立对极其复杂体系理解的工具,才可以解答生命科学的复杂问题。”图灵·达尔文实验室副主任,哲源科技联合创始人赵宇博士表示。对于AI制药而言,单点突破的运行模式,已经在某种意义上被证伪,但行业的生长曲线始终向上。*封面图片来源:123rf近期推荐声明:动脉网所刊载内容之知识产权为动脉网及相关权利人专属所有或持有。未经许可,禁止进行转载、摘编、复制及建立镜像等任何使用。动脉网,未来医疗服务平台
近年来,AI技术正在以前所未有的速度刷新着健康产业的认知边界。尤其在2022年,国内有关AI医疗器械的监管政策实现了重大突破,也使得AI影像医疗器械的审批创先新高——整个2022年,NMPA共发出了二十多张AI三类证,是历年来AI三类证获批最多的一年,在目前已获批的AI三类证中占据了接近半数。包括监管政策在内,各种政策的不断完善无疑为AI医疗的前进提供了保证。与此同时,作为数字医疗的代表,技术的发展对于AI医疗的推动也必不可少。这些领域的有赖于整个行业生态的共同努力。概括而言,决定AI产品差异的核心要素主要包括数据、算法和算力。作为全球AI算力的主要提供者,半导体巨头英伟达(NVIDIA)在2022年连续在医疗领域发力,发布了多个针对AI医疗的解决方案。这些方案,也将会在未来逐渐被引入到AI与医疗结合的各个场景中。 从云端到边缘端,硬件升级提升AI算力通过一代又一代产品的改进,英伟达为AI行业持续提供低成本高性能的算力方案,并帮助AI行业将这些算力切实有效地导入到具体应用场景。这也使得AI应用在最近几年实现了长足发展,并使得英伟达的软硬件方案成为了人工智能行业最为重要的“基础设施”之一。尽管如此,英伟达在自我迭代上丝毫没有放松。以针对数据中心的AI加速卡为例,英伟达在此之前已凭借两代数据中心GPU在数据中心AI加速上占据了绝对的市场份额。但在2022年的GTC22上,英伟达又再次发布了全新的数据中心加速卡,通过云服务商在数据中心的部署,可望将全球云端AI算力提升到一个全新的水平。当然,除了云端AI算力的提升,边缘AI算力的提升或许更容易被感知。随着物联网的迅速普及,人工智能与物联网在实际应用中的落地与融合无疑将推动人类社会进入“万物智能互联”时代,而随之产生的数据也将呈井喷式爆发。这些数据对于现有网络带宽是巨大的压力,也为传统的云端AI加速提出了巨大的难题。好消息是,正是基于云端AI加速赋予的强大算力,人工智能和机器学习领域取得了巨大进步,并为机器学习、神经网络训练等网络架构和工具不断适配、兼容到嵌入式系统上提供了先决条件。越来越多的AI应用开始可以直接在边缘设备运行,使得边缘AI成为当下的发展趋势。所谓边缘AI是指在硬件设备上本地处理的AI算法,可以在没有网络连接的情况下处理数据。这意味着其可以在无需流式传输或在云端数据存储的情况下进行数据创建等操作。为了实现这些目标,边缘AI可以在云上靠深度学习生成数据,而在设备本身(边缘)执行模型的推断和预测。相比云端AI加速,边缘AI加速至少具有带宽、延迟、经济性、可靠性和隐私几个好处。第一,边缘AI可以降低网络带宽需求。由于边缘设备处理了部分产生的临时数据,不再需要将全部数据上传至云端,这极大地减轻了网络带宽的压力,且减少了对计算存储资源的需求。第二,边缘AI在靠近数据源端进行数据处理,能够大大地减少系统时延,提高服务的响应时间。这对于一些对延时要求较高的应用场景,如自动驾驶等而言极为重要。第三,边缘AI在特定场景下具有更好的经济性。这些特定应用即便能从技术上解决带宽和延迟问题实现云端AI加速,但在边缘执行计算可能更划算。第四,边缘AI的可靠性更好。考虑到云端网络连接并非一直可靠,需要持续运行的场景使用边缘AI显然更合适。比如,智能门锁具有人脸识别开锁的功能。显然,用户会希望即使网络断开,这个功能依然可以正常使用。第五,边缘AI可以为关键性隐私数据的存储与使用提供基础设施,提升数据的安全性,从而解决特定应用对隐私的考虑。正因为此,边缘AI成为了近年来兵家必争之地。来自ABI Research的数据显示,预计到2025年,边缘AI加速芯片的市场规模将达到122亿美元,超越云端AI加速芯片119亿美元的市场规模。在GTC22上,英伟达首次发布了用于高精度边缘AI的IGX平台,将为医疗等行业带来先进、主动的安全性能,并能够改善人机协同。IGX平台将可以提供安全、低延迟的AI推理能力,以满足临床对医疗程序中一系列医疗器械和传感器对即时数据的处理需求,如机器人辅助手术、患者监测系统等。英伟达IGX边缘AI平台(图片由英伟达提供)IGX平台是一套强大的硬件和软件组合,除了IGX Orin这一强大、紧凑、节能的AI超级计算机硬件外,也将提供对一系列软件方案的支持,比如Clara Holoscan这一用于医疗器械的即时AI软件方案。它可助力医疗器械开发者接合边缘、本地数据中心与云服务,并通过这种集成快速开发新型软件定义设备,将最新AI应用直接引入手术室。目前,三家领先医疗器械初创企业——Activ Surgical、Moon Surgical 和 Proximie已选择依托IGX+Clara Holoscan的组合为其手术机器人系统提供强大支持。比如,Activ Surgical利用IGX+Clara Holoscan来加速其AI+VR/AR解决方案的开发以实现实时手术指导。这家美国企业使用增强现实技术让外科医生可以查看类似血流等肉眼无法看到的关键生理结构和生理机能,并将信息集成到手术成像系统中,从而降低手术并发症的发生率,改善患者医护服务并加强患者安全。法国企业Moon Surgery正在设计的Maestro是一款易于使用、具有自适应性的手术辅助机器人系统,可与手术室内已安装的医疗器械和工作流配合发挥作用。借助IGX+Clara Holoscan的帮助,Maestro的影像管道、管理系统和硬件设计工程周期缩短了至少6个月,从而使其可以转而将宝贵的工程设计资源集中在人工智能算法和其他独特特征上。英国企业Proximie则正在构建远程呈现平台,以实现外科医生的实时远程协作。IGX+Clara Holoscan的组合使其能够在手术室中处理本地视频,为用户提高性能的同时保护数据隐私并降低云计算成本。目前,Proximie已被部署到全球500多个手术室中,并完成了对数以万计的手术的记录。包括这三家公司在内,目前已有超过70家医疗器械公司、初创企业和医疗中心已经在使用Holoscan推动AI应用在临床环境中的部署并将医疗器械发展成SaaS业务模式。毫无疑问,在英伟达IGX平台的支撑下,边缘AI在医疗领域的应用即将迎来爆发,一如当初的AI医疗影像。 优化和拓展,软件进化完善布局在英伟达过往数十年的成功经验中,软件方案对硬件的增强是其在与竞争对手的竞争中胜出的重要武器。正因为此,英伟达向来对软件生态高度重视,并在2021年提出打造AI底座的概念,NVIDIA AI Enterprise平台(NVAIE)就是这一概念的结果。NVAIE旨在通过提供全套工具链来解决企业在AI应用开发中的挑战,帮助企业高效、安全地构建和部署AI应用。这套工具链应该包括模型部署工具、模型管理平台、模型监控工具、数据隐私保护工具等等,从而可以帮助企业更好地管理和控制AI应用开发过程,确保AI应用的可用性和可靠性。随着这一版本的不断迭代更新,刚刚发布的NVAIE 3.0终于在功能上接近了这一目标。这个堪称操作系统的一站式AI开发平台可以于快速打造AI应用,包括模型训练、推理优化、部署、模型管理、云原生管理等AI应用开发上线的全流程。以往需要耗时数个月才能开发完成的AI应用,在NVAIE 3.0平台下,甚至可以做到数小时完成。为了加快AI应用开发效率,提升最终AI应用效果,NVAIE 3.0还内置了大量未加密且完全开放权重的预训练模型,可供用户直接调用。除了NVAIE 3.0,专门针对医疗场景的Clara平台早在2018年就已推出。英伟达同样一直在不断对其进行优化和拓展,以完善其在医疗健康的布局。最初,Clara仅是为影像学AI研究者提供一个医学影像的软件开发工具,以标准化影像数据,并提升AI训练速度。随后,通过与业界的合作,Clara开始向基因组学拓展。毕竟,基因组是一个更为庞大的数据源,要处理亿级的碱基配对,必须找到更理想的算力来源,才能保证试验在成本上可行。随着英伟达对医疗健康应用场景的理解越来越深入,更多的医疗行业解决方案开始被放入Clara平台。如同英伟达最初建立行业地位的“GeForce”在游戏界的地位一样,它显然希望“Clara”能够与医疗健康绑定——这一定位于面向医疗开发者的智能计算软件平台为更想要探索医疗领域的开拓者提供高效便捷的数据分析工具。在GTC22上,英伟达则宣布了新的进展——它将与美国麻省理工学院和美国哈佛大学旗下的博德研究所合作,为博德研究所的Terra云平台提供快速分析海量医疗数据所需的AI算法和加速工具。作为由博德研究所、微软和Verily共同开发的云平台,生物医学研究人员能够通过Terra平台安全、大规模地共享、访问和分析数据。目前,平台包括来自学术界、初创企业和大型制药公司的25000多名生物医学研究人员。他们都将从合作中获益。根据披露,此次合作将重点关注下列三大关键领域。第一,英伟达将在Terra云平台上提供测序数据二级分析的GPU加速软件套件——Clara Parabricks。它可以大幅缩短基因组分析时间至一小时多一点——在以往基于CPU环境的Clara中这个时间需要24小时。此外,Clara Parabricks还可将整个基因组测序分析的成本降低50%。第二,英伟达还发布了BioNeMo框架,用于训练和部署超算规模的大型生物分子语言模型(LLM),帮助科学家更好地了解疾病,并为患者找到治疗方法。BioNeMo框架将支持化学、蛋白质、DNA和RNA数据格式,它也是Clara Discovery药物研发框架、应用和AI模型集的一部分。英伟达BioNeMo框架应用示意图(图片由英伟达提供)第三,英伟达还致力于为10多万名研究人员所使用的行业标准工具——博德研究所的GATK工具包打造新的深度学习模型,帮助研究人员识别与疾病相关的基因变异。这将助力新药研发人员研究新的疗法。这次合作将有望通过一个开放的云平台将研究人员相互联系起来,并将研究人员与其实现科学突破所需的数据集和工具连接起来,从而将生物医学合作研究提升到一个全新的阶段。此外,Terra平台的用户还能够访问用于医学影像AI的开源深度学习框架——MONAI,以及可用于加快基因组单细胞分析数据准备工作的GPU加速数据科学工具包——RAPIDS。提到MONAI,这一开源AI开发框架在模型构建上是Clara生态的重要一环。MONAI具有自动标注工具来协助开发者标注数据,并能够实现自动化模型挑选和参数调优。同时,MONAI也具有自监督学习,可以利用非标注数据训练模型,从而缩短标注时间。此外,MONAI针对医疗数据的独特需求进行了专项优化,使其能够处理医学图像所特有的格式、分辨率和元信息。开发者可以利用其专门用于医疗领域的数据转换、神经网络架构和评估方法来评估医学影像模型的质量。因其开源和易用特性,MONAI自推出后反响良好,下载量已突破65万次——在2022年2月,月下载量还只有5万次而已。MONAI的功能还在进一步增强——英伟达在2022年12月举办的(北美放射学年会)上发布了MONAI应用包(简称:MAP),它将使得MONAI能更轻松地将模型集成到临床工作流中。在以往,如果想要在影像部门部署几个AI模型来帮助专家识别十几种不同的病症或实现医学影像报告的半自动化创建,需要耗费大量时间和资源来为每个模型寻求合适的硬件和软件基础设施。这种方式虽然“可能”,但并不“可行”。通过MONAI Deploy提供的MAP则是一种AI模型的打包方式,能够大幅简化这一流程。如果开发者使用MAP打包一个应用,医院就可以轻松地在本地或云端运行这一应用。同时,MAP规格还整合了医疗信息化标准,比如医学影像互操作性标准DICOM等。目前,世界各地的医疗机构、学术医疗中心和 AI 软件开发商正在采用MAP。比如知名的美国辛辛那提儿童医院,该学术医疗中心正在为一个能够在CT影像中自动分割整体心脏容积的AI模型创建MAP,进而通过美国国立卫生研究院资助的一个项目,为小儿心脏移植患者提供援助。此外,美国加州大学旧金山分校也在为包括髋部骨折检测、肝脏和脑肿瘤分割、膝关节和乳腺癌分类等几个AI模型开发MAP。开发了用于肺癌、脑外伤和肺结核等用例的医学影像AI模型的Qure.ai则正使用MAP打包需要部署的解决方案,推动这些解决方案更快速地在临床发挥影响力。SimBioSys则建立了患者肿瘤的3D虚拟表征,并将MAP用于有助预测患者对特定治疗会作何反应的精准医疗AI应用。 此外,知名的云服务商,如亚马逊、谷歌、微软和甲骨文等正陆续将MAP整合其中,以助力采用MONAI Deploy的研究者和企业通过容器或原生应用集成,在自己的平台上运行AI应用,从而为用户助力。写在最后不难看出,无论从硬件还是软件,英伟达一直在与业界紧密合作,不断了解行业的需要并根据反馈对其完善。并通过自我迭代不断完善其AI解决方案,使其能够提升AI在医疗应用中的性能、效率并降低成本,这将使得英伟达在AI医疗行业生态中的地位进一步提升。*参考资料THU数据派:《原创 | 一文了解边缘计算和边缘AI》*封面图片来源:123rf如果您想对接动脉网所报道的企业,请扫描小程序码进入VB100人脉圈查看。近期推荐声明:动脉网所刊载内容之知识产权为动脉网及相关权利人专属所有或持有。未经许可,禁止进行转载、摘编、复制及建立镜像等任何使用。动脉网,未来医疗服务平台
100 项与 CLARA OPTICS, INC. 相关的药物交易
100 项与 CLARA OPTICS, INC. 相关的转化医学