BACKGROUND AND AIMS:Though cyclooxygenase inhibitors are employed in rheumatoid arthritis treatment, modulators of leukotrienes are underexplored. We investigated the therapeutic potential of montelukast, a known cysteinyl leukotriene receptor-1 (CysLT1) inhibitor in an experimental rat model of arthritis.
METHODS:Arthritis was induced in rats, and montelukast (5 mg/kg body wt.) was administered prophylactically (PAM) and therapeutically (TAM) through oral route.
RESULTS AND DISCUSSION:Blood and joint tissue markers of oxidative stress (lipid peroxidation, protein carbonyls, and nitric oxides) were significantly (p < 0.05) reduced in montelukast administered rats. Paw inflammation, RA markers (RF and CRP), eicosanoids (PGE2, LTB4, and LTC4), cytokines (IL-1β and MCP-1), activity of hydrolytic enzymes (collagenase, elastase, and hyaluronidase), expression of matrix metalloproteinases (MMP), and EP-4 receptor were significantly (p < 0.05) reduced in montelukast administered rats. This study established that leukotriene inhibition through montelukast lowered the severity of arthritis and thus a potential strategy for reducing the severity of arthritis.