IntroductionPatients with limbal dysfunction, which occurs when corneal epithelial stem cells are depleted, require the transplantation of donor corneal epithelial stem cells or donor-independent cell sources. This study aimed to establish organoids with limbal epithelial progenitor cell function from the central cornea, where stem cells do not reside in vivo. We confirmed the regenerative capacity of organoids in a rabbit limbal deficiency model.MethodsAfter treatment with collagenase, central corneal epithelial cells were scraped from corneal tissue and seeded onto Matrigel. For comparison, cells were collected from the limbus. The cells were cultured in Limbal Phenotype Maintenance Medium (LPMM). After 1 month, the organoids were observed in terms of number and size, immunohistochemistry, cell cycle, and colony-forming efficiency. Organoids were also transplanted into a rabbit model of limbal deficiency.ResultsAlthough we were able to form organoids from the central cornea, the number of organoids from the cornea was small (approximately one tenth compared to the limbus) after 1-month culture. Cornea-derived organoids were similar in shape and size to limbal-derived organoids, and expressed keratin 15 and p63, which are characteristics of the limbal epithelium, as well as collagen type IV, laminin, and tenascin-C, which are limbal basement membrane components. Cornea-derived organoids also showed colony forming efficiency, slow-cycling cells, and label-retaining cells. Transplanted corneal organoids were observed in the limbus of a rabbit limbal deficiency model, and the presence of organoid-derived cells extending into the host cornea was confirmed by immunohistochemistry using anti-human nuclei, -K12, -collagen type IV, and -laminin antibodies.ConclusionsOur data suggest that corneal organoids de-differentiated to gain a limbal phenotype and functionally supplied corneal epithelium in a rabbit limbal deficiency model for up to 1 month.