NPR1 (Nonexpressor pathogenesis-related genes 1) is regulated by multisite phosphorylation and SUMOylation, serving as a master switch for effector-triggered plant immunity through a transcriptional activator (TGA3) and repressor (WRKY70) are experimentally well studied. However, the conformational relationship between the various phosphorylation, un-phosphorylation states, and SUMOylation's role in the functional switch remains unclear. Using deep learning-based molecular modeling, docking, and multi-nanosecond simulations (totaling 2 μs) with end-state free energy calculations, we unveil how different phosphorylation states impact the dynamic stability of NPR1's four phospho-serine residues (Ser11, Ser15, Ser55, & Ser59) and binding of the TGA3-WRKY70 over SUMOylation. Results from our simulations show that the salicylic-acid induced P-Ser11/15NPR1-SUMO3 stabilizes helices and the flexible activation loop (α22Lys423 - α1Arg50 & L35Asp467-Arg51α51, and Gly27L3), thereby switching association with TGA3. The inter-helix salt-bridge formed (L10Arg99-Glu323α9 and α14Glu280-Pro264L6) between the phosphorylated NPR1-SUMO3-TGA3 engage in tight control of conformational regulation were disengaged in the unphosphorylated system. The P-Ser55/59NPR1-SUMO3-WRKY70 reorients itself and forms an electrostatic and hydrogen bond with Lys145α7 - L2Asp26, L6Arg99 - Leu293L18 and Lys262L15 - Glu241L15, α13Val239 (α310), & L17Leu267 keeps complex stable and quiescent compare to unphosphorylated NPR1-WRKY70. Subsequently, the essential dynamic and secondary structural analysis reveals that the phosphorylation inhibits the α516 (long helix) formation and reduces the communication space between the 460α25-βturn3-α30-L42590 (NPR1) and 90L9-L10107 (SUMO3), making the binding more suitable for TGA3 (260βturn-L6270) and WRKY70 (230L15-L16265) via activation loop. These findings, which reveal the atomic and structural details of the NPR1's post-translational modification, will illuminate future investigations into enhancing plant immunity.