Nanoplastics (NPs) interact with cooccurring chemicals and natural organic matter (NOM) in the environment, forming complexes that can change their bioavailability and interfacial toxicity in aquatic organisms. This study aims to elucidate the single and combined impacts of 21-day chronic exposure to low levels of polystyrene NPs (size 80 nm) at 1 mg/L and 6:2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES or F53B) at 200 μg/L in the presence and absence of NOM (humic acid-HA and bovine serum albumin-BSA at 10 mg/L) in adult zebrafish (Danio rerio). Our findings through multiple bioassays, revealed that the mixture group (M), comprising of NPs, F53B, HA, and BSA, caused a higher level of toxicity compared to the single NPs (AN), single F53B (AF), and combined NPs+F53B (ANF) groups. The mixture exposure caused the highest level of vacuolization and nuclear condensation in hepatocytes, and most of the intestinal villi were fused and highly reduced in villi length and crypt depth. Further, the T-AOC levels were significantly lower (p < 0.05), while the MDA levels in the liver and intestine were significantly higher (p < 0.05) in the M group with downregulation of nfkbiaa, while upregulation of prkcda, csf1ra, and il1b apoptosis genes in the liver. Pairwise comparison of gut microbiota showed significantly higher (p < 0.05) abundances of various genera in the M group, including Gordonia, Methylobacterium, Tundrisphaera, GKS98, Pedomicrobium, Clostridium, Candidatus and Anaerobacillus, as well as higher abundance of genera including pathogenic strains, while control group showed higher abundance of probiotic genus ZOR0006 than exposed group (p < 0.01). The transcriptomic analysis revealed highest number of DEGs in the M group (2815), followed by the AN group (506) and ANF group (206) with the activation of relaxin signaling pathway-RSP (slc9a1, slc9a2) and AMP-activated protein kinase (AMPK) pathway (plin1), and suppression of the toll-like receptor (TLR) pathway (tlr4a, tlr2, tlr1), cytokine-cytokine receptor interaction (CCRI) pathway (tnfb, il21r1, il21, ifng1), and peroxisome proliferator-activated receptors (PPAR) pathway (pfkfb3). Overall, toxicity in the M group was higher, indicating that the HA and BSA elevated the interfacial impacts of NPs and F53B in adult zebrafish after chronic environmentally relevant exposure, implying the revisitation of the critical interaction of NOM with co-occurring chemicals and associated impacts.