Kashin-Beck Disease (KBD), an osteoarticular disorder, is influenced by various factors, including exposure to Deoxynivalenol (DON) and T-2 mycotoxins. This study systematically explored the impact of these mycotoxins on the development and structural resilience of spinal structures in mice, examining both isolated and combined effects. The experiment involved 72 male mice divided into nine groups, each subjected to varying concentrations of T-2, DON, or their combinations over four weeks. Rigorous monitoring included body weight, key indicators of bone metabolism, and cellular activities essential to bone health. Comprehensive evaluations using biomechanical analysis, x-ray, and micro-computed tomography (micro-CT) were conducted to assess alterations in spinal structure. The findings revealed a pivotal aspect: mice exhibited a dose-dependent decline in body weight when exposed to individual mycotoxins, while simultaneous exposure produced an unanticipated antagonistic effect. Moreover, decreases were noted in levels of calcium, phosphorus, and vitamin D, coupled with changes in the activities of osteoblasts (increased) and osteoclasts (decreased), all intricately tied to the toxins' dosages and combinations. Notably, variations in the biomechanical properties corresponded with the mycotoxin dosage and blend, showing a decline in biomechanical strength. Micro-CT analyses further substantiated the profound toxic impact of the toxin dosage and mixtures on both the cortical and trabecular components of the spinal structures. In summary, this investigation unequivocally illuminates the dose- and ratio-dependent deleterious impacts of DON and T-2 mycotoxins on the growth and structural soundness of spinal structures in mice. These findings highlight the urgent need for a comprehensive understanding of the potential hazards these toxins pose to bone health, providing invaluable guidance for future toxicological research and public health strategies.