LAMA2-related congenital muscular dystrophy (LAMA2-CMD), characterized by laminin-α2 deficiency, is debilitating and ultimately fatal. To date, no effective therapy has been clinically available. Laminin-α1, which shares significant similarities with laminin-α2, has been proven as a viable compensatory modifier. To evaluate its clinical applicability, we establish a Lama2 exon-3-deletion mouse model (dyH/dyH). The dyH/dyH mice exhibit early lethality and typical LAMA2-CMD phenotypes, allowing the evaluation of various endpoints. In dyH/dyH mice treated with synergistic activation mediator-based CRISPRa-mediated Lama1 upregulation, a nearly doubled median survival is observed, as well as improvements in weight and grip. Significant therapeutical effects are revealed by MRI, serum biochemical indices, and muscle pathology studies. Treating LAMA2-CMD with LAMA1 upregulation is feasible, and early intervention can alleviate symptoms and extend lifespan. Additionally, we reveal the limitations of LAMA1 upregulation, including high-dose mortality and non-sustained expression, which require further optimization in future studies.