INTRODUCTIONWith the long-term goal of developing a diagnostic (99mTc) and therapeutic (186Re) agent pair for targeting somatostatin receptor (SSTR)-positive neuroendocrine tumors (NETs), we developed novel metal-cyclized peptides through direct labeling of the potent SSTR2 antagonist Ac-4-NO2-Phe-c(DCys-Tyr-DTrp-Lys-Thr-Cys)-DTyr-NH2 (1) with Re (in Re-1), 99mTc (in [99mTc]Tc-1) and 186Re (in [186Re]Re-1).METHODSRe-1 was characterized by LC-ESI-MS and HR-ESI-MS and was tested for receptor affinity in SSTR-expressing cells (AR42J). Radiolabeling of the peptide was achieved via ligand exchange from 99mTc-labeled glucoheptonate or [186Re]ReOCl3(PPh3)2, yielding [99mTc]Tc-1 or [186Re]Re-1, respectively. In vitro stability of [99mTc]Tc-1/[186Re]Re-1 in PBS (10 mM) at pH 7.4 and 37 °C was determined by HPLC analysis. Moreover, [99mTc]Tc-1 stability was tested in cysteine (1 mM) and rat serum under the same conditions.RESULTSRe-1 consisted of two isomers, confirmed by LC-ESI-MS, with good SSTR2 affinity (IC50 = 43 ± 6 nM). Optimization of the 99mTc labeling through varying reaction parameters such as pH, reaction time, and Sn2+ and ligand concentrations resulted in high radiochemical yield (RCY ≥92%). Similarly, [186Re]Re-1 was prepared in reasonable RCY (≥50%). Both 99mTc/186Re-tracers consisted of two product isomers as identified by HPLC co-injection with Re-1. While [99mTc]Tc-1 was sufficiently stable in vitro (≥71% intact through 4 h in PBS, cysteine and rat serum), [186Re]Re-1 exhibited more moderate in vitro stability (58% intact after 1 h in PBS).CONCLUSIONSNovel 99mTc/186Re-cyclized SSTR2 antagonist peptides were synthesized and characterized using the Re-cyclized analogue as a reference. Due to the nanomolar SSTR2 affinity of Re-1 and good in vitro stability of [99mTc]Tc-1, the latter shows early promise for development as a radiodiagnostic agent for SSTR-expressing NETs.ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CAREThe 99mTc-cyclized complex showed promising in vitro properties, and future in vivo studies will determine the potential for translating such a design into the human clinic.