Oxytocin (OT) is a neuropeptide involved in a wide variety of physiological actions, both peripherally and centrally. Many human studies have revealed the potential of OT to treat autism spectrum disorders and schizophrenia. OT interacts with the OT receptor (OTR) as well as vasopressin 1a and 1b receptors (V1aR, V1bR) as an agonist, and agonistic activity for V1aR and V1bR may have a negative impact on the therapeutic effects of OTR agonism in the CNS. An OTR-selective agonistic peptide, FE 202767, in which the structural differences from OT are a sulfide bond instead of a disulfide bond, and N-alkylglycine replacement for Pro at position 7, was reported. However, the effects of amino acid substitutions in OT have not been comprehensively investigated to compare OTR, V1aR, and V1bR activities. This led us to obtain a new OTR-selective analog by comprehensive amino acid substitutions of OT and replacement of the disulfide bond. A systematic amino acid scanning (Ala, Leu, Phe, Ser, Glu, or Arg) of desamino OT (dOT) at positions 2, 3, 4, 5, 7, and 8 revealed the tolerability for the substitution at positions 7 and 8. Further detailed study showed that trans-4-hydroxyproline (trans-Hyp) at position 7 and γ-methylleucine [Leu(Me)] at position 8 were markedly effective for improving receptor selectivity without decreasing the potency at the OTR. Subsequently, a combination of these amino acid substitutions with the replacement of the disulfide bond of dOT analogs with a sulfide bond (carba analog) or an amide bond (lactam analog) yielded several promising analogs, including carba-1-[trans-Hyp7,Leu(Me)8]dOT (14) with a higher potency (7.2pM) at OTR than that of OT and marked selectivity (>10,000-fold) over V1aR and V1bR. Hence, we investigated comprehensive modification of OT and obtained new OT analogs that exhibited high potency at OTR with marked selectivity. These OTR-selective agonists could be useful to investigate OTR-mediated effects on psychiatric disorders.