Kombucha bacterial cellulose (KBC), a by-product of kombucha fermentation, can be used as a biomaterial for microbial immobilization. In this study, we investigated the properties of KBC produced from green tea kombucha fermentation on days 7, 14, and 30 and its potential as a protective carrier of Lactobacillus plantarum, a representative beneficial bacteria. The highest KBC yield (6.5%) was obtained on day 30. Scanning electron microscopy showed the development and changes in the fibrous structure of the KBC over time. They had crystallinity indices of 90-95%, crystallite sizes of 5.36-5.98 nm, and are identified as type I cellulose according to X-ray diffraction analysis. The 30-day KBC had the highest surface area of 19.91 m2/g, which was measured using the Brunauer-Emmett-Teller method. This was used to immobilize L. plantarum TISTR 541 cells using the adsorption-incubation method, by which 16.20 log CFU/g of immobilized cells was achieved. The amount of immobilized L. plantarum decreased to 7.98 log CFU/g after freeze-drying and to 2.94 log CFU/g after being exposed to simulated gastrointestinal tract conditions (HCl pH 2.0 and 0.3% bile salt), whereas the non-immobilized culture was not detected. This indicated its potential as a protective carrier to deliver beneficial bacteria to the gastrointestinal tract.