Ganoderic acid T (GAT), a triterpenoid molecule of Ganoderma lucidum, exhibits anti-cancer activity; however, the underlying mechanisms remain unclear. Therefore, in this study, we aimed to investigate the anti-cancer molecular mechanisms of GAT and explore its therapeutic applications for cancer treatment. GAT exhibited potent anti-cancer activity in an ES-2 orthotopic ovarian cancer model in a humanized mouse model, leading to significant alterations in the tumor microenvironment (TME). Specifically, GAT reduced the proportion of α-SMA+ cells and enhanced the infiltration of tumor-infiltrating lymphocytes (TILs) in tumor tissues. After conducting proteomic analysis, it was revealed that GAT downregulates galectin-1 (Gal-1), a key molecule in the TME. This downregulation has been confirmed in multiple cancer cell lines and xenograft tumors. Molecular docking suggested a theoretical direct interaction between GAT and Gal-1. Further research revealed that GAT induces ubiquitination of Gal-1. Moreover, GAT significantly augmented the anti-cancer effects of paclitaxel, thereby increasing intratumoral drug concentrations and reducing tumor size. Combined with immunotherapy, GAT enhanced the tumor-suppressive effects of the anti-programmed death-ligand 1 antibody and increased the proportion of CD8+ cells in the EMT6 syngeneic mammary cancer model. In conclusion, GAT inhibited tumor growth, downregulated Gal-1, modulated the TME, and promoted chemotherapy and immunotherapy efficacy. Our findings highlight the potential of GAT as an effective therapeutic agent for cancer.