The ruthenium compound [Ru(2)Cl(Ibp)(4)] (or RuIbp) has been reported to cause significantly greater inhibition of C6 glioma cell proliferation than the parent HIbp. The present study determined the effects of 0-72h exposure to RuIbp upon C6 cell cycle distribution, mitochondrial membrane potential, reactive species generation and mRNA and protein expression of E2F1, cyclin D1, c-myc, pRb, p21, p27, p53, Ku70, Ku80, Bax, Bcl2, cyclooxygenase 1 and 2 (COX1 and COX2). The most significant changes in mRNA and protein expression were seen for the cyclin-dependent kinase inhibitors p21 and p27 which were both increased (p<0.05). The marked decrease in mitochondrial membrane potential (p<0.01) and modest increase in apoptosis was accompanied by a decrease in anti-apoptotic Bcl2 expression and an increase in pro-apoptotic Bax expression (p<0.05). Interestingly, COX1 expression was increased in response to a significant loss of prostaglandin E(2) production (p<0.001), most likely due to the intracellular action of Ibp. Future studies will investigate the efficacy of this novel ruthenium-ibuprofen complex in human glioma cell lines in vitro and both rat and human glioma cells growing under orthotopic conditions in vivo.