SR9009, a peroxisome proliferator-activated receptor δ (PPARδ) agonist, is known for its potential benefits in energy homeostasis. It failed to receive the United States Food and Drug Administration (USFDA) approval and its illegal distribution has raised concerns. As a result, it has been classified as a prohibited substance by the World Anti-Doping Agency and the International Federation of Horseracing Authorities (IFHA). This study emphasizes the application of the in-silico molecular networking technology to analyze phase I drug metabolites in horses, distinguishing it from conventional methodologies in forensic science. Feature-based molecular networking (FBMN) analysis identified 15 metabolites, with novel major N-dealkylated metabolite (-C8H7NO4S), indicative of diverse metabolic modifications in horse liver microsomes incubation assay. Additionally, a proposed metabolic pathway of SR9009 in the in vitro assay was outlined, including the previously known dehydroxylated metabolite. Finally, the metabolic pathways included in this study were as follows: hydroxylation, dehydrogenation, N-dealkylation dihydroxylation, and combinations. Molecular networking provided insights into MS spectra connectivity, facilitating rapid interpretation and accurate detection of previously undiscovered metabolites. In conclusion, this study contributes to the understanding of SR9009 metabolism in horses and underscores the importance of advanced analytical techniques, such as molecular networking, in enhancing the accuracy and efficiency of metabolite analysis for forensic and doping control purposes.