Summary:Platelet-activating factor (PAF) is a proinflammatory agent in infectious and inflammatory diseases, partly due to the activation of infiltrating phagocytes. PAF exerts its actions after binding to a monospecific PAF receptor (PAFR). The potent bioactivity is reflected by its ability to activate neutrophils at picomolar concentrations, as defined by changes in levels of intracellular Ca2+ ([Ca2+]i), and induction of chemotaxis and actin polymerization at nanomolar concentration. The role of PAF in neutrophil survival is, however, less well appreciated.In this study, the inhibitory effects of synthetic PAFR-antagonists on various neutrophil functions were compared with the effect of recombinant human plasma-derived PAF-acetylhydrolase (rPAF-AH), as an important enzyme for PAF degradation in blood and extracellular fluids. We found that endogenously produced PAF (–like) substances were involved in the spontaneous apoptosis of neutrophils. At concentrations of 8 µg/ml or higher than normal plasma levels, rPAF-AH prevented spontaneous neutrophil apoptosis (21 ± 4% of surviving cells (mean ± SD; control) versus 62 ± 12% of surviving cells (mean ± SD; rPAF-AH 20 µg/ml); P < 0·01), during overnight cultures of 15 h. This effect depended on intact enzymatic activity of rPAF-AH and was not due to the resulting product lyso-PAF. The anti-inflammatory activity of rPAF-AH toward neutrophils was substantiated by its inhibition of PAF-induced chemotaxis and changes in [Ca2+]i.In conclusion, the efficient and stable enzymatic activity of rPAF-AH over so many hours of coculture with neutrophils demonstrates the potential for its use in the many inflammatory processes in which PAF (–like) substances are believed to be involved.