Pig bile- and Fructus Evodiae sauce-processed Rhizoma Coptidis (Danhuanglian, DHL; Yuhuanglian, YHL, respectively) are two types of processed Rhizoma Coptidis (Huanglian, HL) in traditional Chinese medicine (TCM). DHL and YHL are representative of HL generated from the subordinate and counter system processing methods, respectively, both noted for their anti-inflammatory effects. How these processing methods can affect the medicinal efficacy of HL remains a hot topic. Here, we discussed the influence of the two methods on the efficacy of final HL products (i.e., DHL and YHL) by comparing their components and anti-inflammatory mechanisms. Enzyme-linked immunosorbent assay was employed to measure inflammatory factors in RAW264.7 cells induced by lipopolysaccharide, and UPLC-Q-Exactive Orbitrap-MS was utilized to analyze the endogenous differential metabolites of RAW264.7 cells treated with HL, YHL, and DHL, and thus to identify the related metabolic pathways. Finally, using network pharmacology, we constructed a "disease-target-differential metabolites-active ingredients" network map. Compared with the control, all three products, HL, YHL, and DHL, significantly reduced IL-6, TNF-α, and IL-1β levels. 12 differential metabolites related to inflammation were identified and 25 target proteins were overlapping among the three groups. Notably, the anti-inflammatory effects of DHL and YHL were mediated by metabolic pathways such as aminoacyl-tRNA biosynthesis, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, and arginine biosynthesis. Specifically, DHL significantly impacted free fatty acid levels, which was not observed with HL and YHL. On screening, DHL had 9 active ingredients, including three from pig bile, and YHL had 12 active ingredients, with six from the processing excipient Fructus Evodiae. The distinct anti-inflammatory mechanisms and material basis of YHL and DHL were characterized by consistency and distinctiveness. Thus, this study underscores the significant influence of processing methods on the medicinal efficacy of TCMs by revealing their regulatory mechanisms and material bases.