Airway epithelial cells from cystic fibrosis (CF) individuals cannot secrete adequate Cl- through cystic fibrosis transmembrane regulator, and their Na+ channel (ENaC) activity is increased so that excessive Na+ and water is absorbed from the lumen. These aberrant transport activities can, at least partly, be compensated by pharmacologically increasing the activities of Ca2+-activated Cl- channels (CaCCs). The therapeutic value of this approach is currently being examined in clinical trials of candidate CF drugs such as INS-37217 (Inspire Pharmaceuticals) and Moli1901 (Lantibio, Inc.). This review argues that these drug development programmes will be helped if one can fully understand how the CaCCs are inhibited by inositol 3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P4), so that there can be pharmacological intervention in this process. Furthermore, genes that encode enzymes controlling Ins(3,4,5,6)P4 metabolism should be viewed as impacting upon CaCC activity; this, in turn, may influence the severity of the CF condition. Expression profiling of genes that regulate inositol phosphate metabolism may also illuminate variability in patient response to treatment regimens that target CaCCs. Compounds have been developed that can activate CaCCs by antagonising their inhibition by Ins(3,4,5,6)P4. One member of this drug family (INO-4995; Inologic) was recently shown to inhibit ENaC, thereby reducing fluid absorbtion by airway epithelial cells.