Choline kinase (ChoK) has been well documented as a major enzyme involved in the anomalous cellular lipid metabolic profile of chronic inflammatory disorders. However, new research has now been unveiled that helps us to better understand how changes in lipid metabolism influence the transformational phenotype, drug resistance, and antiapoptotic characteristics of invasive cells, leading to rheumatoid arthritis (RA) disease progression. It is still unknown how ChoK modulates the lipid metabolic aberrations that may promote altered cell phenotype and functionality in RA. Herein, we review the current understanding of ChoK's role in altered metabolism in diverse cell types involved in RA progression, and for the first time, we take a step forward to complete the puzzle and summarise striking facts that link choline metabolism to its transformed phenotype, in order to postulate ChoK as a robust therapeutic target in RA. This review forms a foundation on which ChoK can be tackled as a potential biomarker, opening doors for RA diagnosis and prognosis. It frameworks several ChoK inhibitors that rewire the lipid metabolic profile in the inflammatory disease landscape and envisages its being translated to clinics.