Arsenic trioxide (ATO), the active ingredient in Chinese arsenic, effectively inhibits hepatocellular carcinoma (HCC) cell growth, but its clinical application is limited by the lack of a targeted delivery system. Phosphatidylinositol proteoglycan 3 (GPC3) is specifically expressed in HCC, and CPP44 is a cell-penetrating peptide that targets HCC cells. Here, we developed a liposome incorporating ATO with dual surface modifications of anti-GPC3 antibody and CPP44. The system was firstly enriched and localised at the liver tumour site through passive targeting by EPR and active targeting by specific binding of anti-GPC3 antibody to GPC3 protein. CPP44 then facilitated ATO penetration into HCC cells. Specifically, we first employed computational modelling to demonstrate that the covalently-coupled antibody maintained its binding ability to the GPC3 antigen. Subsequent experimental assays revealed that Dl-ATO-Lp exhibited higher cell uptake rate and stronger tumour cell killing effect. In an HCC mouse model, Dl-ATO-Lp achieved effective tumour targeting, with a tumour inhibition rate of 63.43%. This dual-ligand liposome system enhances the targeted delivery and therapeutic efficacy of ATO, offering a promising direction for solid tumour therapy and advancing the clinical application of ATO.