The objective is to assess the anti-inflammatory effect of Tao Hong Si Wu Tang combined with anti-PD-1 in a mouse model of COPD combined with lung cancer, elucidating its mechanism through modulation of PD-1/PD-L binding, regulation of Th1/Th2 and Th17/Treg balance, inhibition of IL-4 and IL-17, and promotion of IFN-γ and TGF-β levels in peripheral blood. One hundred male C57/BL6 mice were randomly allocated to five groups: A (blank control), B (model control), C (THSW), D (anti-PD-1), and E (THSW + anti-PD-1), with 20 mice in each group. The COPD model was induced using fumigation and LPS intra-airway drip, followed by the establishment of lung cancer by Lewis cell inoculation. Treatment groups received Tao Hong Si Wu Tang or/and PD-1 monoclonal antibody. Various indicators were assessed, including macroscopic observation, HE staining of lung tissue, ELISA for cytokines, flow cytometry for cell proportions, and immunohistochemistry/western blotting for protein expression. Lung tissue analysis revealed significant differences between groups, with marked tumor formation observed in groups B-E. Serum levels of IL-4, IFN-γ, IL-17, and TGF-β were significantly altered, along with changes in CD4 + T/CD8 + T ratio and cytokine-producing cell populations. Expression levels of key proteins were also significantly affected across treatment groups. Tao Hong Si Wu Tang demonstrated anti-inflammatory effects comparable to anti-PD-1, potentially through modulation of PD-1/PD-L binding, correction of Th1/Th2 and Th17/Treg imbalance, and modulation of cytokine levels. These findings suggest a role for Tao Hong Si Wu Tang in ameliorating inflammation and immune dysregulation in COPD combined with lung cancer.